
User-centered 

design
GUIDELINES FOR DESIGN AND
EVALUATION

REQUIREMENTS 
IDENTIFICATION

Laura Farinetti - DAUIN



Design for usability

• One of the central problems that must be solved in a 
user-centered design process is how to provide 
designers with the ability to determine the usability 
consequences of their design decisions

• Design rules, classified along two dimensions: authority 
and generality
– Principles: abstract design rules, with high generality and low 

authority

– Standards: specific design rules, high in authority and limited in 
application

– Guidelines: lower in authority and more general in application

• Can be supported by psychological, cognitive, ergonomic, 
sociological, economic or computational theory, which may or may 
not have roots in empirical evidence

3/31/2016 User-centered design 2



Principles to support usability

• Three main categories

– Learnability: the ease with which new users can begin 

effective interaction and achieve maximal 

performance

– Flexibility: the multiplicity of ways in which the user 

and system exchange information

– Robustness: the level of support provided to the user 

in determining successful achievement and 

assessment of goals

3/31/2016 User-centered design 3



Learnability 

3/31/2016 User-centered design 4



Flexibility 

3/31/2016 User-centered design 5



Robustness 

3/31/2016 User-centered design 6



Usability metrics from ISO 9241

• Ergonomic Requirements for Office Work with Visual 
Display Terminals (VDT)s

3/31/2016 User-centered design 7



Golden rules and heuristics

• Nielsen’s ten heuristics (mainly for evaluation)

• Shneiderman’s eight golden rules 

• Norman’s seven principles

3/31/2016 User-centered design 8



Shneiderman’s eight golden rules of 

interface design 

• Intended to be used during design, but can also be 
applied to evaluation 

1. Strive for consistency in action sequences, layout, 
terminology, command use and so on

2. Enable frequent users to use shortcuts, such as 
abbreviations, special key sequences and macros, to 
perform regular, familiar actions more quickly.

3. Offer informative feedback for every user action, at a 
level appropriate to the magnitude of the action

4. Design dialogs to yield closure so that the user knows 
when they have completed a task

3/31/2016 User-centered design 9



Shneiderman’s eight golden rules of 

interface design 

5. Offer error prevention and simple error handling so that, 
ideally, users are prevented from making mistakes and, 
if they do, they are offered clear and informative 
instructions to enable them to recover

6. Permit easy reversal of actions in order to relieve 
anxiety and encourage exploration, since the user 
knows that he can always return to the previous state

7. Support internal locus of control so that the user is in 
control of the system, which responds to his actions

8. Reduce short-term memory load by keeping displays 
simple, consolidating multiple page displays and 
providing time for learning action sequences

3/31/2016 User-centered design 10



Norman’s seven principles for transforming 

difficult tasks into simple ones

1. Use both knowledge in the world and knowledge in the head
– People work better when the knowledge they need to do a task is 

available externally, but experts also need to be able to internalize 
regular tasks to increase their efficiency

– Systems should provide the necessary knowledge within the 
environment and their operation should be transparent to support the 
user in building an appropriate mental model of what is going on

2. Simplify the structure of task
– Tasks need to be simple in order to avoid complex problem solving 

and excessive memory load

3. Make things visible: bridge the gulfs of execution and 
evaluation
– The interface should make clear what the system can do and how 

this is achieved, and should enable the user to see clearly the effect 
of their actions on the system

3/31/2016 User-centered design 11



Norman’s seven principles for transforming 

difficult tasks into simple ones

4. Get the mappings right
– User intentions should map clearly onto system controls

– User actions should map clearly onto system events

– Controls, sliders and dials should reflect the task (e.g. a small 
movement has a small effect and a large movement a large effect)

5. Exploit the power of constraints, both natural and artificial
– Constraints are things in the world that make it impossible to do 

anything but the correct action in the correct way (e.g puzzles)

• Design for error
– Anticipate the errors the user could make and design recovery into 

the system

• When all else fails, standardize
– If there are no natural mappings then arbitrary mappings should be 

standardized so that users only have to learn them once

– E.g., in cars the critical controls (accelerator, brake, clutch, steering) 
are always the same

3/31/2016 User-centered design 12



Nielsen’s ten 

heuristics

• Broad rules
(1995)

3/31/2016 Version Control with Git 13



Formalizing requirements

• The initial vision and user inputs must be “distilled” into a 
set of requirements

• Strategic choices: what is in, what is out

• Describes what the system does, and the external 
constraints

• Might be used as a “specification contract”

• It may range from a high-level abstract statement of a 
service or of a system constraint to a detailed 
mathematical functional specification

• Requirements engineering
– The process of establishing the services that the customer 

requires from a system and the constraints under which it 
operates and is developed

3/31/2016 User-centered design 14



Types of requirements

• User requirements

– Statements in natural language plus diagrams of the 

services the system provides and its operational 

constraints

– Written for customers

• System requirements (or developer requirements)

– A structured document setting out detailed descriptions of 

the system’s functions, services and operational 

constraints

– Defines what should be implemented so it may be part of a 

contract between client and contractor

3/31/2016 User-centered design 15



Example 

3/31/2016 User-centered design 16

The software must provide a means of representing and accessing 

external files edited by other tools

1.1 The user should be provided with facilities to define the type of external 

files

1.2 Each external file type may have an associated tool which may be 

applied to the file

1.3 Each external file type may be represented as a specific icon on the 

user’s display

1.4 Facilities should be provided for the icon representing an external file 

type to be defined by the user

1.5 When a user selects an icon representing an external file the effect of 

that selection is to apply the tool associated with the external file type 

to the file represented by the selected icon

User requirement definition

System requirements specification



Types of requirements

• Functional requirements (FR)
– Statements of services the system should provide, how the 

system should react to particular inputs and how the 
system should behave in particular situations

• Non-functional requirements (NFR)
– Aka Quality requirements

– Constraints on the services or functions offered by the 
system such as timing constraints, constraints on the 
development process, standards, etc.

• Domain requirements
– Requirements that come from the application domain of the 

system and that reflect characteristics of that domain

3/31/2016 User-centered design 17



Functional Requirements (FR)

• What the system does

• What functions it offers to its users

• Don’t care how they will be implemented (yet)

• A long list of “local” features (easy to identify a 

small portion of the system that delivers that 

function)

3/31/2016 User-centered design 18



Examples 

• FR3.1: The user must be able to activate 
and de-activate the wake-up service. This 
decision will be applied until the user changes it again.

• FR3.2: The user must be able to silence the wake-up 
service just for the next day. Service will resume 
automatically on the following day.

• FR4.4: The user must be able to set up an “ad hoc” 
wake-up call, that will run only once, will not be 
remembered, and will have specific settings

• FR4.4.1: The user may configure the settings of any 
already defined “ad hoc” call

• FR4.4.2: The user may configure the default settings for 
(to be created) “ad hoc” calls

3/31/2016 User-centered design 19



Non-functional requirements (NFR)

• Define system properties and constraints e.g. 
reliability, response time and storage requirements.
– Constraints are I/O device capability, system 

representations, Supported devices, Usability, Language, 
etc.

• Process requirements may also be specified 
mandating a particular set of tools, programming 
language or development method

• Non-functional requirements may be more critical 
than functional requirements: if these are not met, 
the system is useless.

3/31/2016 User-centered design 20



Pervasiveness in NFR

• NFR are usually “general” and cannot be 

localized to a single spot in system 

implementation

• Every function, in every module, in every screen, 

in every device, …. must guarantee that no NFR 

is broken

3/31/2016 User-centered design 21



Non-functional requirements

3/31/2016 User-centered design 22



Examples 

• NFR1: The mobile interfaces must be 
compatible with iOS (8.0 and later), 
Android (4.2 and later)

• NFR2: The system will be localized in many languages 
(default: English)

• NFR18: The system should work, in reduced conditions, 
even if the user mobile device is switched off or 
disconnected

• NFR3: The web interfaces will be compatible with 
browsers … version ….

• NFR4: The web interfaces will be “responsive”, and will 
adapt to screen resolutions from 800x600 to 1920x1080

3/31/2016 User-centered design 23



Good requirements

• The best requirements are

3/31/2016 User-centered design 24

Complete Correct Clear 

Verifiable Necessary Feasible 

Prioritized Consistent Traceable 

Modular 
Design-

independent



Good requirements

• Complete: express a whole idea or statement
– Should describe completely the user task and the information 

required to support the task

– Define response to all possible inputs (both correct and incorrect)

– Define all terms and unit of measure

– Focusing on system functionality instead of user needs to be 
accomplished may lead to incomplete requirements

• Example

3/31/2016 User-centered design 25

‘We must be able to change an employee’s profile 

information’

‘We must be able to change the employees last name, 

first name, middle initial, street address, city, state, zip 

code, marital status’



Good requirements
• Correct: technically and legally possible

– The requirements should be appropriate to meet the goals 
of the project and accurately describe the user’s 
expectations of the functionality

– Customer or users can determine if the requirement 
correctly reflects their actual needs

• Example

3/31/2016 User-centered design 26

‘Employees only change their name when their 

address or their marital status changes’

‘Employees may change their name in the payroll 

system by providing the appropriate legal proof of the 

change. The change may come with a change in 

marital status, address or be made alone’



Good requirements
• Clear: unambiguous and not confusing

– Requirements should be written so that all readers will arrive at a 
single, consistent interpretation

– Clear to those who create it and to those who use it

– Ambiguous requirements can result in the wrong system being 
developed and may not be found during testing due to the 
incorrect interpretation of the requirements

• Example

3/31/2016 User-centered design 27

‘Employees are not allowed to work for more than 80 

hours in one week’

‘Employee time worked: the time worked is recorded in 

hours, the smallest increment recorded is .25 of an 

hour. If an employee reports more than 80 hours in a 7 

day period, a warning is provided to the supervisor and 

the payment is held for approval.’



Good requirements

• Verifiable: it can be determined whether the system 
meets the requirement
– Each requirement should be testable and verifiable 

– There exists some finite cost-effective process with which a 
person or machine can check that the software product 
meets the requirement

– Ambiguous requirements are not verifiable

• Example

3/31/2016 User-centered design 28

‘The system should be easy to use’

‘A novice user must be able to add a new employee to 

the payroll system within 10 minutes’



Good requirements

• Necessary: should support one of the project goals
– Related to specific and meaningful goals

• Example

3/31/2016 User-centered design 29

‘We should be able to enter the employee eye colour’

Why is this requirement necessary?



Good requirements

• Feasible: it can be accomplished within cost and 
schedule
– The business analyst must be sure that all requirements 

are technologically possible for a reasonable cost

• Example

3/31/2016 User-centered design 30

‘The system should automatically be updated when the 

government changes the law’

Although this requirement may be technologically feasible, 

it would involve a complex interface (and likely new 

government system) with an outside organisation which 

would be very expensive and difficult to negotiate. 

Is it a critical requirement?



Good requirements

• Prioritized: tracked according to business need 
levels
– Each requirement should be prioritised

• Most organisations use the MoSCoW method for 
prioritisation
– Must Have: the system must meet this requirement for the 

end product to be considered a success

– Should Have: the system should have this requirement for 
it to solve the main business problem

– Could Have: it would be good to include this requirement to 
ensure maximum benefit

– Would Have: this is a nice to have requirement which the 
business could do without if necessary

3/31/2016 User-centered design 31



Good requirements

3/31/2016 User-centered design 32

• Consistent: not in conflict with other 

requirements

– No subset of requirements is in conflict

– Logical and temporal consistence

• Traceable: uniquely identified and tracked

– Backward: explicitly referencing source in earlier 

documents

– Forward: unique name or reference number



Good requirements

3/31/2016 User-centered design 33

• Modular: can be changed without excessive 

impact

– Structure and style such that any changes can be 

made easily, completely, and consistently while 

retaining the structure and style

– Well structured, non redundant, separate 

requirements

• Design-independent: do not pose specific 

solutions on design



License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work

– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the 

author or licensor (but not in any way that suggests that they endorse you or 
your use of the work).

– Noncommercial - You may not use this work for commercial purposes.

– Share Alike - If you alter, transform, or build upon this work, you may 
distribute the resulting work only under the same or similar license to this 
one.

• To view a copy of this license, visit 
http://creativecommons.org/license/by-nc-sa/3.0/

3/31/2016 User-centered design 34

http://creativecommons.org/license/by-nc-sa/3.0/

