
Web accessibility
CONCEPT and GUIDELINES

Laura Farinetti - DAUIN

Summary

• Inclusive design and accessibility principles

• Web accessibility

• Screen readers

• Standards

– WCAG

– WAI-ARIA

• Legge Stanca

5/10/2019 Web accessibility 2

WEB ACCESSIBILITY

STANDARDS

5/10/2019 Web accessibility 3

Web accessibility standards

• Web accessibility relies on several components that
work together
– Web content: refers to any part of a website, including text,

images, forms, and multimedia, as well as any markup
code, scripts, applications, and such

– User agents: software that people use to access web
content, including desktop graphical browsers, voice
browsers, mobile phone browsers, multimedia players,
plug-ins, and some assistive technologies

– Authoring tools: software or services that people use to
produce web content, including code editors, document
conversion tools, content management systems, blogs,
database scripts, and other tools

5/10/2019 Web accessibility 4

Web Accessibility Initiative (WAI)

• Develops strategies, guidelines, and resources to help
make the Web accessible to people with disabilities

5/10/2019 Web accessibility 5

Image by Michael Duffy, from:

Essential Components of Web

Accessibility. S.L. Henry, ed.

Copyright W3C ® (MIT, ERCIM,

Keio, Beihang).

www.w3.org/WAI/intro/compone

nts.php

Web accessibility standards

• The W3C Web Accessibility Initiative (WAI) provides

a set of guidelines that are internationally recognized

as the standard for web accessibility

– Web Content Accessibility Guidelines (WCAG)

– User Agent Accessibility Guidelines (UAAG)

– Authoring Tool Accessibility Guidelines (ATAG)

– Accessible Rich Internet Applications (WAI-ARIA)

includes dynamic content and advanced user interface

controls developed with Ajax, JavaScript, and related web

technologies

5/10/2019 Web accessibility 6

https://www.w3.org/WAI/intro/wcag.php
https://www.w3.org/WAI/intro/uaag.php
https://www.w3.org/WAI/intro/atag.php
https://www.w3.org/WAI/intro/aria.php

Web Content Accessibility

Guidelines (WCAG)
• The WCAG documents explain how to make web

content more accessible to people with disabilities
– Web "content" generally refers to the information in a web

page or web application, including: natural information such
as text, images, and sounds code or markup that defines
structure, presentation, etc.

• WCAG 1.0
– W3C Rec May 5th, 1999

• WCAG 2.0
– W3C Rec Dec 11th, 2008

• WCAG 2.1
– W3C Rec Jun 5th, 2018

5/10/2019 Web accessibility 7

WCAG 2

• 4 principles

• 12 guidelines

• Three levels: A, AA, and AAA

• Testable success criteria

5/10/2019 Web accessibility 8

WCAG 2 supporting technical material

• How to Meet WCAG 2: quick reference to Web Content
Accessibility Guidelines 2.0 requirements (success criteria)
and techniques, essentially the WCAG 2.0 checklist
– https://www.w3.org/WAI/WCAG21/quickref/

• Techniques for WCAG 2: details on how to develop accessible
Web content, such as HTML code examples. The techniques
are "informative", that is, you do not have to use them. The
basis for determining conformance to WCAG 2.0 is the
success criteria from the WCAG 2.0 standard, not the
techniques
– https://www.w3.org/WAI/WCAG21/Techniques/

• Understanding WCAG 2: additional guidance on learning and
implementing WCAG 2.0 for people who want to understand
the guidelines and success criteria more thoroughly
– https://www.w3.org/WAI/WCAG21/Understanding/

5/10/2019 Web accessibility 9

https://www.w3.org/WAI/WCAG21/quickref/
https://www.w3.org/WAI/WCAG21/Techniques/
https://www.w3.org/WAI/WCAG21/Understanding/

The WCAG 2 document family

5/10/2019 Web accessibility 10

Example

5/10/2019 Web accessibility 11

WCAG 2 principles and guidelines

• At the top are four principles (POUR) that provide the foundation for Web
accessibility

• Guidelines are under the principles

• Perceivable
– Provide text alternatives for non-text content

– Provide captions and other alternatives for multimedia

– Create content that can be presented in different ways,
including by assistive technologies, without losing meaning

– Make it easier for users to see and hear content

• Operable
– Make all functionality available from a keyboard

– Give users enough time to read and use content

– Do not use content that causes seizures

– Help users navigate and find content

• Understandable
– Make text readable and understandable

– Make content appear and operate in predictable ways

– Help users avoid and correct mistakes

• Robust
– Maximize compatibility with current and future user tools

5/10/2019 Web accessibility 12

5/10/2019 Web accessibility 13

WCAG 2 success criteria

• For each guideline, testable success criteria are
provided to allow WCAG 2 to be used

• In order to meet the needs of different groups and
different situations, three levels of conformance are
defined
– A (lowest)

– AA

– AAA (highest)

5/10/2019 Web accessibility 14

WCAG 2.0 success criteria

5/10/2019 Web accessibility 15

WCAG 2.1 success criteria

• All success criteria from 2.0 are included in 2.1

• The 2.0 success criteria are exactly the same
(verbatim, word-for-word) in 2.1

• 17 additional success criteria
– mobile accessibility (8)

– people with low vision (5)

– people with cognitive
and learning disabilities (4)

5/10/2019 Web accessibility 16

WCAG 2.1 new success criteria

5/10/2019 Web accessibility 17

Other WCAG 2 sections

• Sufficient and Advisory Techniques
– An informative list of typical mistakes and good-

practice techniques is provided

– Techniques fall into two categories: those that are
sufficient for meeting the success criteria and those
that are advisory (optional)

• Common Failures
– Describe authoring practices known to cause Web

content not to conform to WCAG 2

– https://www.w3.org/WAI/WCAG21/Techniques/

Web Accessibility Workshop 18

https://www.w3.org/WAI/WCAG21/Techniques/

Example

5/10/2019 Web accessibility 19

Example: 1. Perceivable

5/10/2019 Web accessibility 20

https://www.w3.org/TR/WCAG20/#guidelines

https://www.w3.org/TR/WCAG20/#guidelines

Example: 1.4 Distinguishable

5/10/2019 Web accessibility 21

Example: 1.4.1 Use of Colors

5/10/2019 Web accessibility 22

Example: 1.4.1 Use of Colors

5/10/2019 Web accessibility 23

Example

5/10/2019 Web accessibility 24

Example

5/10/2019 Web accessibility 25

Example

5/10/2019 Web accessibility 26

WebAIM's WCAG 2 checklist

• A simple checklist that presents WebAIM
recommendations for implementing HTML-related
principles and techniques for those seeking WCAG
2.0 conformance
– WCAG 2.0 covers accessibility of all web content and is not

technology specific

– The checklist has been targeted primarily for evaluation of
HTML content

– contains WebAIM's interpretation of WCAG guidelines and
success criteria and our own recommended techniques for
satisfying those success criteria

– https://webaim.org/standards/wcag/checklist

5/10/2019 Web accessibility 27

https://webaim.org/standards/wcag/checklist

WebAIM's WCAG 2 checklist

• Example: perceivable

5/10/2019 Web accessibility 28

Evaluation tools

• While Web accessibility evaluation tools can
significantly reduce the time and effort to
evaluate Web sites, no tool can automatically
determine the accessibility of Web sites

• W3C does not endorse specific vendor products

• Overview of Web accessibility evaluation tools
– https://www.w3.org/WAI/ER/tools/index.html

Web Accessibility Workshop 29

https://www.w3.org/WAI/ER/tools/index.html

Typical evaluation process

5/10/2019 Web accessibility 30

Compliance

criteria
Scope

Automatic

Tests

Expert

Tests

Results Results

User Tests

Results

Aggregated

report

Solving

issues

WAVE evaluation tool

• The WAVE Chrome and
Firefox extensions allow to
evaluate web content for
accessibility issues directly
within Chrome and Firefox
browsers
– https://wave.webaim.org/help

• Developed by WebAIM
– https://addons.mozilla.org/en-

US/firefox/addon/wave-
accessibility-tool/

– https://chrome.google.com/webst
ore/detail/wave-evaluation-
tool/jbbplnpkjmmeebjpijfedlgcdilo
cofh

5/10/2019 Web accessibility 31

https://wave.webaim.org/help
https://addons.mozilla.org/en-US/firefox/addon/wave-accessibility-tool/
https://chrome.google.com/webstore/detail/wave-evaluation-tool/jbbplnpkjmmeebjpijfedlgcdilocofh

Color contrast
• A contrast ratio of 3:1 is the minimum level recommended by ISO

and ANSI standards (ISO-9241-3, ANSI-HFES-100-1988) for
standard text and vision

• The 4.5:1 ratio is used to account for the loss in contrast that results
from moderately low visual acuity, congenital or acquired color
deficiencies, or the loss of contrast sensitivity that typically
accompanies aging
– See https://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-

20081211/working-examples/G183/link-contrast.html

5/10/2019 Web accessibility 32

https://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/working-examples/G183/link-contrast.html

Color contrast checker
• WCAG 2.0 level AA requires a contrast ratio of at least 4.5:1 for

normal text and 3:1 for large text

• Level AAA requires a contrast ratio of at least 7:1 for normal text and
4.5:1 for large text.

• Large text is defined as 14 point (typically 18.66px) and bold or
larger, or 18 point (typically 24px) or larger

5/10/2019 Web accessibility 33

https://webaim.org/resources/contrastchecker/

https://webaim.org/resources/contrastchecker/

WAI-ARIA

5/10/2019 Web accessibility 34

WAI-ARIA

• The last ten years have seen the rise of Ajax, JavaScript,
HTML5, and countless front-end frameworks
– The internet is no longer a place of static HTML pages, but it is

has become a playground for complex, almost desktop-like web
applications, each with their own widgets, controls, and behavior

• Sometimes web development is pushed to the limit… and
people with disabilities struggle with these new
techniques

• This is not due to disabled JavaScript or insufficient
capabilities of current assistive technology (AT)
– On the contrary, in 2012 WebAIM found that over 98 percent of

screen reader users had JavaScript enabled

– Additionally, ATs like screen readers or refreshable Braille
displays are getting better every year

5/10/2019 Web accessibility 35

WAI-ARIA

• The problem lies with HTML limited ability to mark up

web applications that make heavy use of JavaScript

and produce a huge amount of dynamic content

• Four key obstacles can be identified when assistive

technologies deal with JavaScript applications

– Unknown functionality of components

– Unknown states and properties of components

– Unreported change of dynamic content

– Bad keyboard accessibility

5/10/2019 Web accessibility 36

WAI-ARIA

• In general, accessibility issues with rich internet
applications can be characterized as
– Inability to provide the semantic structure of page areas

and functionality (e.g., navigation, main content, search,
etc.)

– Inaccessibility of content that is dynamic and may change
within the page (e.g., AJAX content updates)

– Inability to change keyboard focus to page elements (e.g.,
setting focus to an error message within the page)

– Difficulty with keyboard and screen reader accessibility with
complex widgets and navigation elements (e.g., sliders,
menu trees, etc.)

• ARIA can help address many of these issues

5/10/2019 Web accessibility 37

Rich-client transactions

5/10/2019 Ajax 38

Client
Web
serverInternet

URL
http
& POST

httpdisplay
page

TCP/IPbrowser server application

HTML

Application

database

data

Database

querycommand

send

param

Client-side
application

runtime

DOM

events

Rich-client asynchronous

transactions

5/10/2019 Ajax 39

Client
Web
serverInternet

URL
http
& POST

httpdisplay
page

TCP/IPbrowser server application

HTML

Application

database

data

Database

querycommand

send

param

Client-side
application

runtime

DOM

events

http

XML/JSON

JSON

• “JSON (JavaScript Object Notation) is a lightweight
data-interchange format. It is easy for humans to
read and write. It is easy for machines to parse and
generate” – JSON.org

• Important: JSON is a subset of JavaScript

• JSON is built on two structures
– A collection of name/value pairs: in various languages, this

is realized as an object, record, struct, dictionary, hash
table, keyed list, or associative array. { … }

– An ordered list of values: in most languages, this is realized
as an array, vector, list, or sequence. […]

5/10/2019 Ajax 40

JSON example

5/10/2019 Ajax 41

{
"firstName": "John",
"lastName": "Smith",
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021

},
"phoneNumbers": [

"212 555-1234",
"646 555-4567"

]
}

Name/Value Pairs

Number data

type
String Array

Child

properties

Rich-client asynchronous

transactions
• In 2005, Jesse James Garrett wrote an online article

titled “Ajax: A New Approach to Web Applications”
(https://courses.cs.washington.edu/courses/cse490h
/07sp/readings/ajax_adaptive_path.pdf)

• This article outlined a technique that he referred to
as Ajax, short for Asynchronous JavaScript+XML,
consisting in making server requests for additional
data without unloading the web page, for a better
user experience

• Garrett explained how this technique could be used
to change the traditional click-and-wait paradigm that
the Web had been stuck in since its start

5/10/2019 Ajax 42

https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf

Synchronous (classic) web

application model

5/10/2019 Ajax 43

Asynchronous web application

model

5/10/2019 Ajax 44

Example

5/10/2019 Ajax 45

WAI-ARIA

• “Web Accessibility Initiative Accessible Rich Internet
Applications (WAI-ARIA)

• A technical specification that defines a way to make
Web content and Web applications more accessible
to people with disabilities
– W3C Recommendation WAI-ARIA 1.1 (14/12/2017)

• Provides attributes for extending HTML markup with
roles, states and properties to expose Web
applications to Assistive Technologies

• ARIA was designed to be recognized only by
assistive technology and does not affect the DOM or
the style in any way

5/10/2019 Web accessibility 46

WAI-ARIA

• WAI-ARIA provides web authors with
– Roles to describe the structure of the Web page, such as

headings, regions, and tables (grids)

– Roles to describe the type of widget presented, such as “menu”,
“treeitem”, “slider”, “progressmeter”, …

– Properties to describe the state widgets are in, such as “checked”
for a check box, or “haspopup” for a menu

– Properties to define live regions of a page that are likely to get
updates (such as stock quotes), as well as an interruption policy
for those updates—for example, critical updates may be
presented in an alert dialog box, and incidental updates occur
within the page

– Properties for drag-and-drop that describe drag sources and drop
targets

– A way to provide keyboard navigation for the Web objects and
events

5/10/2019 Web accessibility 47

WAI-ARIA core components

• Roles
– ARIA roles define what an element is or does

– Most HTML elements have a default role that is presented to
assistive technology

– E.g., a button has a default role of "button" and a form has a
default role of "form“

– With ARIA, you can define roles that are not available in HTML,
or you can override HTML default roles

– Example: <form role="search">: in HTML, all forms have the
same semantics but with ARIA, you can add to the semantics of
a particular form to define it as the search form

• Types of ARIA roles
– Landmark roles (the most important)

– Widget roles

– Document structure roles

– Abstract roles (ontology, not for developers)

– https://www.w3.org/WAI/PF/aria/roles
5/10/2019 Web accessibility 48

https://www.w3.org/WAI/PF/aria/roles

WAI-ARIA core components

• Properties
– ARIA properties define properties or meanings of elements

– You can extend HTML native semantics by defining properties for
elements that are not allowed in standard HTML

– Example: <input aria-required="true">: this property will cause a
screen reader to read this input as being required (meaning the
user must complete it)

• States
– ARIA states are properties that define the current condition of an

element

– They generally change based on user interaction or some
dynamic variable

– Example: <input aria-disabled="true">: this property will cause a
screen reader to read this input as being disabled

5/10/2019 Web accessibility 49

WAI-ARIA core components

• Keyboard navigation
– ARIA also provides keyboard navigation methods for the web

objects and events

• ARIA roles, states, and properties can be defined in
markup or they can be defined and dynamically set and
changed using scripting

• ARIA states and property attributes always start with
"aria-" (e.g., aria-required="true")

5/10/2019 Web accessibility 50

HTML5 and ARIA

• Use ARIA only if necessary

– If you can use a native HTML element [HTML5] or

attribute with the semantics and behaviour you require

already built in, instead of re-purposing an element

and adding an ARIA role, state or property to make it

accessible, then do so

– Example:

5/10/2019 Web accessibility 51

<!--‐--‐ avoid these if possible --‐--‐>
...

<div role="link">...</div>

<!--‐--‐ these are preferred --‐--‐>
<button type="button">...</button>

...

ARIA roles

• ARIA provides a rich role taxonomy that enables
developers to classify otherwise meaningless tags

• This prepares the tags for assistive technologies by
revealing the functionality or the part they play in the
overall web document

5/10/2019 Web accessibility 52

<ul id="myTab" class="nav nav-tabs" role="tablist">

<li class="active"> <a href="#home" role="tab"

data-toggle="tab">Home

 <a href="#profile" role="tab"

data-toggle="tab">Profile

 <a href="#articles" role="tab"

data-toggle="tab">Articles

WAI-ARIA for landmark roles
• HTML5 elements and ARIA roles are complementary

– Including both of them in your site provides a solid code structure
and good navigation around the page

5/10/2019 Web accessibility 53

HTML5 semantic tags and ARIA

landmark roles

• If HTML5 sectioning elements are used without understanding
the associated landmark structure, assistive technology users
will most likely be confused and less efficient in accessing
content and interacting with web pages

5/10/2019 Web accessibility 54

Landmark roles

• Landmarks provide a powerful way to identify the
organization and structure of a web page
– Support keyboard navigation to the structure of a web page for

screen reader users

• All content
should reside in
a semantically
meaningful
landmark in
order that
content
is not missed
by the user

5/10/2019 Web accessibility 55

Landmark roles
• Eight roles, each representing a block of content that occurs

commonly on web pages
– role=”banner”

– role=”navigation” (e.g., a menu)

– role=”main” (the main content of the page)

– role=”complementary” (e.g., a sidebar)

– role=”contentinfo” (meta data about the page, e.g., a copyright
statement)

– role=”search”

– role=”form”

– role=”application” (a web application with its own keyboard interface)

• If a role is used more than once on a page, the aria-label
attribute should also be used in order to distinguish between
the two regions
– <div role=”navigation” aria-label=”Main menu”>

– <div role=”navigation” aria-label=”User menu”>

5/10/2019 Web accessibility 56

Landmark roles usage

• Step 1: Identify the logical structure
– Break the page into perceivable areas called "areas"

– Typically, designers indicate areas visually using alignment
and spacing of content

– Regions can be further defined into logical sub-areas as
needed

• Step 2: Assign landmark roles to each area
– Assign landmark roles based on the type of content in the

area

– banner, main, complementary and contentinfo landmarks
should be top level landmarks

– Landmark roles can be nested to identify parent/child
relationships of the information being presented

5/10/2019 Web accessibility 57

Landmark roles usage

• Step 3: Label each area
– If a specific landmark role is used more than once on a

web page, it should have a unique label

– If a area begins with a heading element (e.g. h1-h6), it can
be used as the label for the area using aria-labelledby
attribute

– If a area does not have a heading element, provide a label
using the aria-label attribute

– Avoid using the landmark role as part of the label: a
navigation landmark with a label “Site Navigation” will be
announced by a screen reader as “Site Navigation
Navigation”, the label should simply be “Site”

5/10/2019 Web accessibility 58

Widget roles

• 25 widget roles
– alert, alertdialog, button, checkbox, dialog, gridcell, link,

log, marquee, menuitem, menuitemcheckbox,
menuitemradio, option, progressbar, radio, scrollbar, slider,
spinbutton, status, tab, tabpanel, textbox, timer, tooltip,
treeitem

• 9 composite roles
– Typically act as containers that manage other contained

widgets

– combobox, grid, listbox, menu, menubar, radiogroup,
tablist, tree, treegrid

5/10/2019 Web accessibility 59

Document structure roles

• Describe structures that organize content in a

page

– Usually not interactive content

– article, columnheader, definition, directory, document,

group, heading, img, list, listitem, math, note,

presentation, region, row, rowgroup, rowheader,

separator, toolbar

5/10/2019 Web accessibility 60

States and attributes

• Similar features
– Both provide specific information about an object, and

contribute to the nature of roles

• Major difference
– the values of properties (e.g., aria-labelledby) are often

less likely to change throughout the application life-cycle
than the values of states (e.g, aria-checked) which may
change frequently due to user interaction

• aria-prefixed markup attributes

• Categorized as

– Widget attributes

– Live Region attributes

– Drag-and-Drop attributes

– Relationship attributes

5/10/2019 Web accessibility 61

States and attributes

5/10/2019 Web accessibility 62

https://developer.mozilla.org/en-

US/docs/Web/Accessibility/ARIA/ARIA_Techniques#States_and_properties

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques#States_and_properties

WAI-ARIA in 5 steps
1. Alert users to what each element or widget is: the

element’s role (such as a menu or a tree)

2. Alert the user to each element properties and important
relationships (such as “aria-haspopup”, “aria-
describedby” and other labels)

3. Alert the user to what each element is doing: the
element’s state (such as “aria-expanded” or “aria-
disabled”)

4. Alert users to any changes in the element’s state

5. Make sure the widget is keyboard accessible and the
focus is predictable
– Interactive controls should receive focus through the keyboard

– Events can be triggered through the keyboard

– How to trigger events should be intuitive to the user

5/10/2019 Web accessibility 63

States and Properties

• The W3C provides some detailed WAI-ARIA best

practices to follow

– https://www.w3.org/TR/wai-aria-practices/

5/10/2019 Web accessibility 64

<li class="active">

<a id="tab1" href="#home" role="tab" aria-controls="home"

data-toggle="tab">Home

https://www.w3.org/TR/wai-aria-practices/

Example: slider

5/10/2019 Web accessibility 65

<div class="clearfix">

Volume:

<div id="sliderRail1" class="sliderRailfloatLeft">

<button class="sliderThumb" id="sliderThumb1" role="slider"

aria-labelledby="sliderLabel" aria-valuemin="0" aria-valuemax="100"

aria-valuenow="0" aria-valuetext="0%"></button>

</div>

0%

</div>

Example

5/10/2019 Web accessibility 66

Example

5/10/2019 Web accessibility 67

https://webaim.org/techniques/aria/

https://webaim.org/techniques/aria/

Example

5/10/2019 Web accessibility 68

https://webaim.org/techniques/aria/

https://webaim.org/techniques/aria/

Example

5/10/2019 Web accessibility 69

<p class="incorrect" id="feedback" role="alert">

Sorry. Try a higher number.

</p>

Dynamic content updates
• When content changes dynamically within a web page, it

may cause accessibility problems
– What happens if a screen reader is currently reading an element

that is updated?

– If the updated content is important, should you interrupt the user
and set focus immediately to the new content, do you simply
inform the user of the update, or do you do nothing?

– How do you set focus or allow the user to jump to the updated
content?

• With WAI-ARIA the developer can identify regions that
dynamically change as a live region
– A live region allows content updates in a way that a screen

reader understands

– It also allows the developer to add additional functionality to alert
the user, provide controls for the live region, determine the
amount of new content that would be read, …

5/10/2019 Web accessibility 70

Live regions

• To create a live region, the developer adds the aria-live
property to the element
– The value, or politeness level (or alternatively the intrusiveness

level) specifies what a screen reader should do when the element is
updated

• aria-live="off“ tells the screen reader not to announce the
update
– Should be used for non-important or irrelevant content updates

• aria-live=“polite“ notifies the user of the content change as
soon as he/she is done with the current task
– This might take the form of a beep or an audio indication of the

update, and the user can then choose to directly jump to the
updated content

– Should be the most common for content updates, especially for
things like status notification, weather or stock updates, chat
messages, etc.

5/10/2019 Web accessibility 71

Live regions

• aria-live=“assertive” will result in the user being alerted to
the content change immediately or as soon as possible
– Assertive would be used for important updates, such as error

messages

• Example

5/10/2019 Web accessibility 72

<div id="myTabContent" class="tab-content"

aria-live="polite">

...

</div>

Enhanced Keyboard Navigation

• In HTML, the only elements that could receive keyboard
focus with the TAB key are links and form elements

• With scripting, however, you can add mouse interactivity
to nearly any element (e.g. spans, paragraphs, …)

• The functionality of these non-focusable elements cannot
be made accessible to screen reader and keyboard-only
users

• ARIA enables every HTML element to receive keyboard
focus by extending the “tabindex” attribute so that it can
be applied to any element

5/10/2019 Web accessibility 73

<li class="tab active">

<a id="tab1" href="#home" role="tab" aria-controls="home"

aria-selected="true" data-toggle="tab" tabindex="0">Home

Enhanced Keyboard Navigation

• The tabindex attribute has three distinct uses:
– tabindex="1" (or any number greater than 1) defines

an explicit tab order; this is almost always a bad idea

– tabindex="0" allows elements besides links and form
elements to receive keyboard focus; it does not
change the tab order, but places the element in the
logical navigation flow, as if it were a link on the page

– tabindex="-1" removes the element from the default
navigation flow but allows it to receive "programmatic"
focus, i.e. focus can be set to the element through
scripting, links, etc.
• Example: a modal dialog window

5/10/2019 Web accessibility 74

LEGGE STANCA

5/10/2019 Web accessibility 75

Legge stanca

• D.M. 9 luglio 2004 che regola l’accessibilità

dei siti web in Italia

– «Disposizioni per favorire l’accesso dei soggetti

disabili agli strumenti informatici»

– Definita come la capacità dei sistemi informatici di

erogare informazioni fruibili, senza discriminazioni,

anche da parte di coloro che a causa di disabilità

necessitano di tecnologie assistive o di configurazioni

particolari

5/10/2019 Web accessibility 76

Soggetti destinatari della legge

• Pubbliche amministrazioni

• Enti pubblici economici, aziende private

concessionarie di servizi pubblici

• Aziende municipalizzate regionali

• Enti di assistenza e di riabilitazione pubblici

• Aziende di trasporto e di telecomunicazione a

prevalente partecipazione di capitale pubblico

• Aziende appaltatrici di servizi informatici

5/10/2019 Web accessibility 77

https://www.webaccessibile.org/articoli/leg

ge-stanca-guida-ai-22-requisiti-tecnici/

Requisiti tecnici
• 22 requisiti tecnici, ridotti a 12 nel 2013

• Riferimento: WCAG 2.0, livello AA

• Requisito 1 – Alternative testuali: fornire alternative
testuali per qualsiasi contenuto di natura non testuale in
modo che il testo predisposto come alternativa possa
essere fruito e trasformato secondo le necessità degli
utenti, come per esempio convertito in stampa a caratteri
ingranditi, in stampa Braille, letto da una sintesi vocale,
simboli o altra modalità di rappresentazione del
contenuto.

• Requisito 2 – Contenuti audio, contenuti video,
animazioni: fornire alternative testuali equivalenti per le
informazioni veicolate da formati audio, formati video,
formati contenenti immagini animate (animazioni),
formati multisensoriali in genere.

5/10/2019 Web accessibility 78

Requisiti tecnici

• Requisito 3 – Adattabile: creare contenuti che possano
essere presentati in modalità differenti (ad esempio, con
layout più semplici), senza perdita di informazioni o
struttura.

• Requisito 4 – Distinguibile: rendere più semplice agli
utenti la visione e l’ascolto dei contenuti, separando i
contenuti in primo piano dallo sfondo.

• Requisito 5- Accessibile da tastiera: rendere disponibili
tutte le funzionalità anche tramite tastiera.

• Requisito 6- Adeguata disponibilità di tempo: fornire
all’utente tempo sufficiente per leggere ed utilizzare i
contenuti.

• Requisito 7- Crisi epilettiche: non sviluppare contenuti
che possano causare crisi epilettiche.

5/10/2019 Web accessibility 79

Requisiti tecnici

• Requisito 8- Navigabile: fornire all’utente funzionalità di
supporto per navigare, trovare contenuti e determinare la
propria posizione nel sito e nelle pagine.

• Requisito 9- Leggibile: rendere leggibile e comprensibile
il contenuto testuale.

• Requisito 10- Prevedibile: creare pagine web che
appaiano e che si comportino in maniera prevedibile.

• Requisito 11- Assistenza nell’inserimento di dati e
informazioni: aiutare l’utente ad evitare gli errori ed
agevolarlo nella loro correzione.

• Requisito 12- Compatibile: garantire la massima
compatibilità con i programmi utente e con le tecnologie
assistive.

5/10/2019 Web accessibility 80

https://www.webaccessibile.org/categorie/legge-

stanca/guida-ai-22-requisiti-tecnici/

https://www.webaccessibile.org/categorie/legge-stanca/guida-ai-22-requisiti-tecnici/

References
• WCAG 2.1 guidelines

– https://www.w3.org/TR/WCAG21/

• WebAIM: WCAG 2 checklist
– https://webaim.org/standards/wcag/checklist

• WAI-ARIA
– https://www.w3.org/WAI/intro/aria.php

• Accessible Rich Internet Applications (WAI-ARIA) 1.1
– https://www.w3.org/TR/wai-aria/

• ARIA landmarks example
– https://www.w3.org/TR/2017/NOTE-wai-aria-practices-1.1-

20171214/examples/landmarks/index.html

• WebAIM: accessibility to Rich Internet Applications
– https://webaim.org/techniques/aria/

• Legge Stanca
– http://www.camera.it/parlam/leggi/04004l.htm

5/10/2019 Web accessibility 81

https://www.w3.org/TR/WCAG21/
https://webaim.org/standards/wcag/checklist
https://www.w3.org/WAI/intro/aria.php
https://www.w3.org/TR/wai-aria/
https://www.w3.org/TR/2017/NOTE-wai-aria-practices-1.1-20171214/examples/landmarks/index.html
https://webaim.org/techniques/aria/
http://www.camera.it/parlam/leggi/04004l.htm

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work

– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

– Noncommercial - You may not use this work for commercial purposes.

– Share Alike - If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

5/10/2019 Web accessibility 82

http://creativecommons.org/license/by-nc-sa/3.0/

