
REST over
HTTP
OVERVIEW

The HTTP protocol, the REpresentational State

Transfer (REST) style, and the JavaScript Object

Notation (JSON) data interchange format

Goal

• Understanding the main communication

protocol (HTTP)

• How to use REST architectures to integrate (call

and/or offer) remote services

4/20/2017 REST over HTTP 2

Summary

• JSON (JavaScript Object Notation)

• HTTP (Hypertext Transfer Protocol)

• REST (Representational State Transfer)

4/20/2017 REST over HTTP 3

JSON

JavaScript Object Notation

4/20/2017 REST over HTTP 4

JSON – What is it?

• “JSON (JavaScript Object Notation) is a

lightweight data interchange format. It is easy

for humans to read and write. It is easy for

machines to parse and generate”

- JSON.org

• Important:

– JSON is a subset of JavaScript

4/20/2017 REST over HTTP 5

JSON Logical Structure

• JSON is built on two structures:

– A collection of name/value pairs. In various
languages, this is realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.
{ … }

– An ordered list of values. In most languages, this is
realized as an array, vector, list, or sequence.
[…]

4/20/2017 REST over HTTP 6

JSON – What does it look like?

{
"firstName": "John",
"lastName": "Smith",
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021

},
"phoneNumbers": [

"212 555-1234",
"646 555-4567"

]
}

Name/Value Pairs

Number data
type

String Array

Child
properties

4/20/2017 REST over HTTP 7

JSON Data Structures

4/20/2017 REST over HTTP 8

HTTP

Hypertext Transfer Protocol

4/20/2017 REST over HTTP 9

What is HTTP?

• HTTP stands for Hypertext Transfer Protocol

• It is the network protocol used to delivery

virtually all data over the WWW:

– Images

– HTML files

– Query results

– Etc.

• HTTP takes places over TCP/IP connections

4/20/2017 REST over HTTP 10

http://www.ietf.org/rfc/rfc2616.txt

HTTP clients and servers

• A browser is an HTTP client because it sends

requests to an HTTP server, which then sends

responses back to the client.

• The standard port for HTTP servers to listen on

is 80, though they can use any port.

4/20/2017 REST over HTTP 11

http - request

http - response

HTTP messages

• The format of the request and response

messages are similar.

– An initial line

– Zero or more header lines

– A blank line (CRLF)

– An optional message body

4/20/2017 REST over HTTP 12

Initial line
header1: value1
header2: value2
header3: value3

message body...

Header Example
HEAD /index.html HTTP/1.1

Host: www.example.com

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

Etag: "3f80f-1b6-3e1cb03b"

Accept-Ranges: bytes

Content-Length: 438

Connection: close

Content-Type: text/html; charset=UTF-8

Request

Response

4/20/2017 REST over HTTP 13

HTTP request – initial line

• The initial line is different for the request and

the response.

• A request initial line has three parts separated

by white spaces:

– A method name

– The local path of the requested resource

– The version of the HTTP being used

• GET /path/to/file/index.html HTTP/1.0

4/20/2017 REST over HTTP 14

HTTP request – initial line

– The method name is always in upper case.

– There are several methods for a HTTP request

• GET (most commonly used)

• POST (used for sending form data)

• HEAD

• ...

– The path is the part of the URL after the host name

• http://www.tryme.com/examples/example1.html

4/20/2017 REST over HTTP 15

HTTP Method Basics
HEAD Gets just the HTTP header

GET Gets HTTP head & body

POST Submits data in the body to the server

PUT Uploads a resource

DELETE Deletes a resource

TRACE Echo’s back the request

OPTIONS Gets a list of supported methods

CONNECT Converts to a TCP/IP tunnel for HTTPS

PATCH Apply partial modifications to a resource

4/20/2017 REST over HTTP 16

HTTP request – initial line

• The HTTP version is always in the form

– HTTP/x.x (uppercase)

• The versions currently in use are:

– HTTP/1.0

– HTTP/1.1

• HTTP/2 exists

– standardized in 2015

4/20/2017 REST over HTTP 17

HTTP response – initial line

• The response initial line is usually called status

line and has also 3 parts separated by spaces:

– The HTTP version

– The response status code

– An English phrase describing the status code

• Example:

– HTTP/1.0 200 OK

– HTTP/1.0 404 Not Found

4/20/2017 REST over HTTP 18

Response Status Codes

• 1xx – Informational

• 2xx – Success

• 3xx – Redirection

• 4xx – Client Error

• 5xx – Server Error

4/20/2017 REST over HTTP 19

Response Status Codes

• 1xx – Informational

• 2xx – Success

• 3xx – Redirection

• 4xx – Client Error

• 5xx – Server Error

• 100 = Continue

• 102 = Processing

• 200 = OK

• 201 = Created

• 204 = No Content

• 206 = Partial Content

• 301 = Moved Permanently

• 302 = Found (Moved Temp)

• 307 = Temp Redirect

• 400 = Bad Request

• 401 = Unauthorised

• 402 = Payment Required

• 403 = Forbidden

• 404 = Not Found

• 405 = Method Not Allowed

• 409 = Conflict

• 450 = Blocked by Windows Parental Controls

• 500 = Internal Server Error

• 501 = Not Implemented

4/20/2017 REST over HTTP 20

HTTP msg – header lines

• Header lines provide information about the
request/response or about the object sent in
the message body

• The header lines are in the following format:
– One line per header

– Form: “Header-Name: value”

• HTTP/1.0 defines 16 headers (none required);
HTTP/1.1 defines 46 headers and 1 is required
in requests:
– Host:

4/20/2017 REST over HTTP 21

Request headers

• Accept

• Accept-Charset

• Accept-Encoding

• Accept-Language

• Authorization;

• Expect

• From

• Host

• If-Match

• If-Modified-Since

• If-None-Match

• If-Range

• If-Unmodified-Since

• Max-Forwards

• Proxy-Authorization

• Range

• Referer

• TE

• User-Agent

4/20/2017 REST over HTTP 22

Response Headers

• Accept-Ranges

• Age

• Etag

• Location

• Proxy-Authenticate

• Retry-After

• Server

• Vary

• WWW-Authenticate

4/20/2017 REST over HTTP 23

General (request & response)
headers
• Cache-Control

• Connection

• Date

• Pragma

• Trailer

• Transfer-Encoding

• Upgrade

• Via

• Warning

4/20/2017 REST over HTTP 24

Message body

• An HTTP message may have a body of data sent

after the header lines.

• In a response the body contains the resource

returned to the client

– Images

– text/plain, text/html

– ...

• In a request it may contain the data entered by

the user in a form or a file to upload, etc.

4/20/2017 REST over HTTP 25

Content Type

• Proper name: Internet Media Type

– Also known as MIME type

• Parts: Type, SubType, Optional Parameters

• x- prefix for nonstandard types or subtypes

• vnd. prefix for vendor specific subtypes

4/20/2017 REST over HTTP 26

Content Type Examples
Content-Type File

text/plain Plain text

text/xml XML

text/html HTML

image/png PNG image

audio/basic Wave audio

audio/mpeg MPEG audio (MP3)

video/quicktime Quicktime Video

application/pdf Adobe PDF document

application/javascript JavaScript

application/vnd.ms-powerpoint PowerPoint file

application/json JSON

4/20/2017 REST over HTTP 27

Message body

• Some HTTP headers are used to describe the body
content:
– Allow
– Content-Encoding
– Content-Language
– Content-Length
– Content-Location
– Content-MD5
– Content-Range
– Content-Type
– Expires
– Last-Modified
– extension-header n

4/20/2017 REST over HTTP 28

HTTP Authentication

• Basic Authentication
– Easy to do, but plain text. Easy to reverse engineer. Less

of an issue when used with SSL.

• Digest Authentication
– Harder to do, still plain text. Hard (impossible?) to reverse

engineer because of hashing.

• NTLM Authentication
– Hard to do, Windows specific. Hard (impossible?) to

reverse engineer.

• Note: usually, authentication is dealt at the
application level, and http mechanisms are not used

4/20/2017 REST over HTTP 29

HTTP methods: HEAD

• The HEAD method is like the GET except it asks

the server to return the response headers,

only. Is useful for checking the characteristics

of a resource without actually downloading it.

• The response to a HEAD request never contains

a message body, only the initial line and the

headers.

4/20/2017 REST over HTTP 30

HTTP methods: POST

• Used to send data to the server

• A POST request is different from the GET

request as:

– There's a block of data sent with the request in the
request message body

– The request URI is not a resource to retrieve, it's
usually a program or a server page that handles the
sent data

– The HTTP response is usually not-static (generated
depending on the received data)

4/20/2017 REST over HTTP 31

GET vs POST

• The most common use of the POST method is

to submit data gathered from user forms

• Also the GET can be used to submit form data

however, the data is encoded in the request URI

– http://www.example.com/example.html?var=This+is
+a+simple+%26+short+test

• GET requests should be idempotent, i.e., may

be repeated without changing the state of the

application

4/20/2017 REST over HTTP 32

HTTP as transport layer

• HTTP is used as “transport” for many resources
/ protocols

• Protocols:
– SOAP (Simple Object Access Protocol)

– XML-RPC

– WebDAV

• Resources:
– Text (plain, HTML, XHTML, ...)

– Images (gif, jpeg, ...)

–

4/20/2017 REST over HTTP 33

REST

REpresentational State Tranfer

4/20/2017 REST over HTTP 34

REST

• Representational
State Transfer

• A style of software architecture for distributed
systems

• Platform-independent
– you don't care if the server is Unix, the client is a Mac, or

anything else

• Language-independent
– C# can talk to Java, etc.

• Standards-based
– runs on top of HTTP

• Can easily be used in the presence of firewalls

4/20/2017 REST over HTTP 35

What is a Resource?

• A resource can be anything that has identity

– a document or image

– a service, e.g., "today's weather in New York"

– a collection of other resources

– non-networked objects (e.g., people)

• The resource is the conceptual mapping to an

entity or set of entities, not necessarily the

entity that corresponds to that mapping at any

particular point in time!

4/20/2017 REST over HTTP 36

Main Principles

• Resource: source of specific information

• Mapping: Resources  URIs

• Client and server exchange representations of
the resource
– the same resource may have different

representations

– e.g., XML, JSON, HTML, RDF, …

• Operations on the Resource is done by means
of HTTP methods
– GET, POST, PUT, DELETE

4/20/2017 REST over HTTP 37

Main Types of Resources

• Collection resource

– Represents a set (or list) of items

– Format: /resource

– e.g., http://api.polito.it/students
http://api.polito.it/courses

• Element (Item) resource

– Represents a single item, and its properties

– Format: /resource/identifier

– e.g., http://api.polito.it/students/s123456
http://api.polito.it/courses/01zqp

4/20/2017 REST over HTTP 38

Best Practice

• Nouns (not verbs)

• Plural nouns

• Concrete names (not abstract)

– /courses, not /items

4/20/2017 REST over HTTP 39

Actions use HTTP Methods

• GET
– Retrieve the representation of the resource (in the HTTP

response body)

– Collection: the list of items

– Element: the properties of the element

• POST
– Create a new resource (data in the HTTP request body)

– Use a URI for a Collection

• PUT
– Update an existing element (data in the HTTP request body)

– Mainly for elements' properties

• DELETE

4/20/2017 REST over HTTP 40

Actions on Resources: Example

Resource GET POST PUT DELETE

/dogs List dogs Create a new
dog

Bulk update
dogs
(avoid)

Delete all
dogs
(avoid)

/dogs/1234 Show info
about the dog
with id 1234

ERROR If exists,
update the
info about
dog #1234

Delete the
dog #1234

4/20/2017 REST over HTTP 41

Relationships

• A given Element may have a (1:1 or 1:N)

relationship with other Element(s)

• Represent with: /resource/identifier/resource

• e.g.,
http://api.polito.it/students/s123456/courses
http://api.polito.it/courses/01qzp/students

4/20/2017 REST over HTTP 42

Representations

• Returned in GET, sent in PUT/POST
• Different formats are possible
• Mainly: XML, JSON

– But also: SVG, JPEG, TXT, …

– In POST: URL-encoding

• Format may be specified in
– Request headers

• Accept: application/json

– URI extension
• http://api.polito.it/students/s123456.json

– Request parameter
• http://api.polito.it/students/s123456?format=json

4/20/2017 REST over HTTP 43

Real Life: GitHub API

4/20/2017 REST over HTTP 44https://developer.github.com/v3/

https://developer.github.com/v3/

Real Life: Twitter API

4/20/2017 REST over HTTP 45https://dev.twitter.com/rest/public

https://dev.twitter.com/rest/public

Real Life: Google Calendar API

4/20/2017 REST over HTTP 46https://developers.google.com/google-apps/calendar/v3/reference/

https://developers.google.com/google-apps/calendar/v3/reference/

Real life: Facebook Graph API

4/20/2017 REST over HTTP 47https://developers.facebook.com/docs/graph-api

https://developers.facebook.com/docs/graph-api

Complex resource search

• Use ?parameter=value for more advanced

resource filtering (or search)

– E.g.,
https://api.twitter.com/1.1/statuses/user_t
imeline.json?screen_name=twitterapi&count=2

4/20/2017 REST over HTTP 48

Errors

• When errors or exceptions are encountered, use

meaningful HTTP Status Codes

– The Response Body may contain additional
information (e.g., informational error messages)

4/20/2017 REST over HTTP 49

{
"developerMessage" : "Verbose, plain language description of

the problem for the app developer with hints about how to fix
it.",

"userMessage":"Pass this message on to the app user if
needed.",

"errorCode" : 12345,
"more info": "http://dev.teachdogrest.com/errors/12345"

}

Authorization: OAuth
oauth_consumer_key="xvz1evFS4wEEPTGEFPHBog", …

Twitter Streaming API

Authorization: AWS
AKIAIOSFODNN7EXAMPLE:frJIUNo//yllqDzg=

Amazon Web Services API

Authorization: Bearer 1/fFBGRNJru1FQd44AzqT3Zg

Google API

Authentication

4/20/2017 REST over HTTP 50

Guidelines

• Design with standards in mind – for example

RSS & ATOM

• Create should return URIs not resources

• Use the right HTTP methods for the right

actions

• You are on HTTP – use the infrastructure

– Proxy, Caching, Etag, Expires

4/20/2017 REST over HTTP 51

URL Design

Plural nouns for collections /dogs

ID for entity /dogs/1234

Associations /owners/5678/dogs

HTTP Methods POST GET PUT DELETE

Bias toward concrete names /dogs (not animals)

Multiple formats in URL /dogs.json
/dogs.xml

Paginate with limit and
offset

?limit=10&offset=0

Query params ?color=red&state=running

Partial selection ?fields=name,state

Use medial capitalization "createdAt": 1320296464
myObject.createdAt;

Use verbs for non-resource
requests

/convert?from=EUR&to=CNY&amount=100

Search /search?q=happy%2Blabrador

DNS api.foo.com
developers.foo.com

Guidelines
(1/2)

4/20/2017 REST over HTTP 52

Errors

Status Codes 200 201 304 400 401 403 404 500

Verbose messages {"msg": "verbose, plain language hints"}

Versioning

Include version in URL /v1/dogs

Keep one previous version long

enough for developers to migrate

/v1/dogs
/v2/dogs

Client Considerations

Client does not support HTTP

status codes

?suppress_response_codes=true

Client does not support HTTP

methods

GET /dogs?method=post
GET /dogs
GET /dogs?method=put
GET /dogs?method=delete

Complement API with SDK and

code libraries

1. JavaScript
2. …
3. …

Guidelines
(2/2)

4/20/2017 REST over HTTP 53

Resources

• HTTP
– http://www.w3.org/Protocols/
– Hypertext Transfer Protocol -- HTTP/1.1:

http://tools.ietf.org/html/rfc2616

• REST
– http://en.wikipedia.org/wiki/Representational_state_transfer
– R. Fielding, Architectural Styles and

the Design of Network-based Software Architectures,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

– Learn REST: A Tutorial: http://rest.elkstein.org/
– https://pages.apigee.com/ebook-web-api-design-

registration.html
– http://www.slideshare.net/apigee/api-design-3rd-edition
– groups.google.com/group/api-craft

4/20/2017 REST over HTTP 54

Resources

• REST

– http://en.wikipedia.org/wiki/Representational_state_tran

sfer

– R. Fielding, Architectural Styles and

the Design of Network-based Software Architectures,

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.ht

m

– https://pages.apigee.com/ebook-web-api-design-

registration.html

– http://www.slideshare.net/apigee/api-design-3rd-edition

– https://cloud.google.com/apis/design/

4/20/2017 REST over HTTP 55

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://pages.apigee.com/ebook-web-api-design-registration.html
http://www.slideshare.net/apigee/api-design-3rd-edition
https://cloud.google.com/apis/design/

Resources

• JSON

– http://json.org

– ECMA-404 The JSON Data Interchange Standard.
http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-
404.pdf

• HTTP

– http://www.w3.org/Protocols/

– Hypertext Transfer Protocol -- HTTP/1.1:
http://tools.ietf.org/html/rfc2616

4/20/2017 REST over HTTP 56

http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/Protocols/
http://tools.ietf.org/html/rfc2616

Questions?
01QZP AMBIENT INTELLIGENCE

Luigi De Russis and Fulvio Corno

luigi.derussis@polito.it

fulvio.corno@polito.it

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 4.0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work
– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

– Noncommercial - You may not use this work for commercial purposes.
– Share Alike - If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/

4/20/2017 REST over HTTP 58

https://creativecommons.org/licenses/by-nc-sa/4.0/

