Cookies

Internet Explorer

Opera -
21
i 2
HTTP R AR
[. -
' I
¢ y f 4
HHHHH 3]
ML3.2
y 4 HTML4 €SS2
/
/
XML
I I I I I Web Fonts

OVERVIEW

The HTTP protocol, the REpresentational State
Transfer (REST) style, and the JavaScript Object
Notation (JSON) data interchange format

POLITECNICO
DI TORINO

Goal

« Understanding the main communication
protocol (HTTP)

 How to use REST architectures to integrate (call
and/or offer) remote services

4/20/2017 REST over HTTP 2

Summary

« JSON (JavaScript Object Notation)
« HTTP (Hypertext Transfer Protocol)
« REST (Representational State Transfer)

4/20/2017 REST over HTTP

{JSON }

JavaScript Object Notation

JSON

4/20/2017 REST over HTTP

JSON - Whatis it?

« “JSON (JavaScript Object Notation) is a
lightweight data interchange format. It is easy
for humans to read and write. It is easy for
machines to parse and generate”

- JSON.org

 Important:
— JSON is a subset of JavaScript

4/20/2017 REST over HTTP 5

JSON Logical Structure

« JSON is built on two structures:

— A collection of name/value pairs. In various
languages, this is realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.

{ .}

— An ordered list of values. In most languages, this is
realized as an array, vector, list, or sequence.

[.]

4/20/2017 REST over HTTP 6

JSON - What does it look like?

{
"flr‘stNamﬁ :" J?hn"’ :l- Name/Value Pairs
lastName": "Smith",

"address": { h
"streetAddress”: "21 2nd Street”,
"city": "New York", -| Child
"state": "NY", properties
"postalCode™: 10021)

},)

"phoneNumbers”: [
"212 555-1234", L String Array
"646 555-4567" Fumberdma

] ype

}

4/20/2017 REST over HTTP

JSON Data Structures

Any UNICODE character except
" or \ or control character

quotation mark

reverse solidus

solidus

backspace

formfeed

newline

carriage return
-

horizontal tab

4 hexadecimal digits |J

{ string 1

—

{number }

—_
ohject

{ object |
LT
amrav 1

{_array |

true

{ tom)
—
{ false)

S

{ null)

number

| S

digit

Hypertext Transfer Protocol

HTTP

4/20/2017 REST over HTTP 9

What is HTTP?

« HTTP stands for Hypertext Transfer Protocol

 |tis the network protocol used to delivery
virtually all data over the WWW:
— Images
— HTML files

— Query results
— Etc.

« HTTP takes places over TCP/IP connections

4/20/2017 REST over HTTP 10

HTTP clients and servers

e AbrowserisanHTTP client because it sends

requests to an HTTP server, which then sends
responses back to the client.

* The standard port for HTTP servers to listen on
is 80, though they can use any port.

- http - request

http - response

4/20/2017 REST over HTTP 11

HTTP messages

 The format of the request and response
messages are similar.

— Aninitial line

— Zero or more header lines Initial line
. headerl: valuel
— A blank line (CRLF) header2: value2

header3: value3

— An optional message body

message body...

4/20/2017 REST over HTTP

12

Header Example

HEAD /index.html HTTP/1.1

Host: www.example.com

Request

Response

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Etag: "3f80f-1b6-3elcbo3b"

Accept-Ranges: bytes

Content-Length: 438

Connection: close

Content-Type: text/html; charset=UTF-8

HTTP request —initial line

« The initial line is different for the request and
the response.

* Arequestinitial line has three parts separated
by white spaces:
— A method name

— The local path of the requested resource
— The version of the HTTP being used

e GET /path/to/file/index.html HTTP/1.0

4/20/2017 REST over HTTP 14

HTTP request —initial line

— The method name is always in upper case.

— There are several methods for a HTTP request
* GET (most commonly used)
« POST (used for sending form data)
« HEAD

— The path is the part of the URL after the host name
: http://www.tryme.conlu/examples/example1.html

4/20/2017 REST over HTTP 15

HTTP Method Basics

HEAD Gets just the HTTP header

GET Gets HTTP head & body

POST Submits data in the body to the server
PUT Uploads a resource

DELETE Deletes a resource

TRACE Echo's back the request

OPTIONS Gets a list of supported methods

CONNECT Convertsto a TCP/IP tunnel for HTTPS

PATCH Apply partial modifications to a resource

4/20/2017 REST over HTTP

16

HTTP request —initial line

 The HTTP version is always in the form
— HTTP/x.x (uppercase)

* The versions currently in use are:
— HTTP/1.0
— HTTP/1.1

« HTTP/2 exists
— standardized in 2015

4/20/2017 REST over HTTP

17

HTTP response —initial line

 The response initial line is usually called status
line and has also 3 parts separated by spaces:
— The HTTP version
— The response status code
— An English phrase describing the status code

« Example:
— HTTP/1.0 200 OK
— HTTP/1.0 404 Not Found

4/20/2017 REST over HTTP 18

Response Status Codes

1xx — Informational
2XX —Success

3xx — Redirection

e 4xx— Client Error
5xx —Server Error

4/20/2017 REST over HTTP

19

Response Status Codes

1xx — Informational
2XX —Success

3xx — Redirection
4xx — Client Error
5xx —Server Error

4/20/2017

100 = Continue

102 = Processing

200 =0K

201 = Created

204 = No Content
206 = Partial Content

400 = Bad Request

401 = Unauthorised

402 = Payment Required

403 = Forbidden

404 = Not Found

405 = Method Not Allowed

409 = Conflict

450 = Blocked by Windows Parental Controls
500 = Internal Server Error

501 = Not Implemented

REST over HTTP 20

HTTP msg — header lines

« Header lines provide information about the
request/response or about the object sent in
the message body

 The header lines are in the following format:

— One line per header
— Form: “Header-Name: value”

« HTTP/1.0 defines 16 headers (none required);
HTTP/1.1 defines 46 headers and 1 is required
In requests:

— Host:

4/20/2017 REST over HTTP

21

Request headers

* Accept * If-None-Match
* Accept-Charset e If-Range
* Accept-Encoding » If-Unmodified-Since

* Accept-Language
 Authorization;
* Expect

* Max-Forwards
* Proxy-Authorization

e Range
 From ang
. Host e Referer
. If-Match * TE

« If-Modified-Since * User-Agent

4/20/2017 REST over HTTP 22

Response Headers

Accept-Ranges

Age

Etag

Location
Proxy-Authenticate
Retry-After

Server

Vary
WWW-Authenticate

4/20/2017 REST over HTTP

23

General (request & response)

headers

* Cache-Control
 Connection

* Date

* Pragma

e Trailer

* Transfer-Encoding
* Upgrade

e Via

* Warning

4/20/2017 REST

over HTTP

24

Message body

« An HTTP message may have a body of data sent
after the header lines.

* In aresponse the body contains the resource
returned to the client

— Images
— text/plain, text/html

* In arequest it may contain the data entered by
the userin a fForm or a file to upload, etc.

4/20/2017 REST over HTTP 25

Content Type

Proper name: Internet Media Type
— Also known as MIME type

Parts: Type, SubType, Optional Parameters
x- prefix For nonstandard types or subtypes
vnd. prefix for vendor specific subtypes

4/20/2017 REST over HTTP 26

Content Type Examples
Content-Type |File

text/plain Plain text
text/xml XML

text/html HTML

image/png PNG image
audio/basic Wave audio
audio/mpeg MPEG audio (MP3)
video/quicktime Quicktime Video
application/pdf Adobe PDF document
application/javascript JavaScript
application/vnd.ms-powerpoint PowerPoint file
application/json JSON

4/20/2017 REST over HTTP 27

Message body

« Some HTTP headers are used to describe the body
content:
— Allow
— Content-Encoding
— Content-Language
— Content-Length
— Content-Location
— Content-MD5
— Content-Range
— Content-Type
— Expires
— Last-Modified
— extension-header n

4/20/2017 REST over HTTP

28

HTTP Authentication

Basic Authentication

— Easy to do, but plain text. Easy to reverse engineer. Less
of an issue when used with SSL.

Digest Authentication

— Harder to do, still plain text. Hard (impossible?) to reverse
engineer because of hashing.

NTLM Authentication

— Hard to do, Windows specific. Hard (impossible?) to
reverse engineer.

Note: usually, authentication is dealt at the
application level, and http mechanisms are not used

4/20/2017 REST over HTTP 29

HTTP methods: HEAD

 The HEAD method is like the GET except it asks
the server to return the response headers,
only. Is useful for checking the characteristics
of a resource without actually downloading it.

 The response to a HEAD request never contains
a message body, only the initial line and the
headers.

4/20/2017 REST over HTTP 30

HTTP methods: POST

 Used to send data to the server

« APOST request is different from the GET
request as:

— There's a block of data sent with the request in the
request message body

— The request URI is not a resource to retrieve, it's
usually a program or a server page that handles the
sent data

— The HTTP response is usually not-static (generated
depending on the received data)

4/20/2017 REST over HTTP 31

GET vs POST

 The most common use of the POST method is
to submit data gathered from user forms

e Also the GET can be used to submit form data

however, the data is encoded in the request URI

— http://www.example.com/example.html?var=This+is
+a+simple+%26+short+test

* GET requests should be idempotent, i.e., may
be repeated without changing the state of the
application

4/20/2017 REST over HTTP 32

HTTP as transport layer

« HTTP is used as “transport” for many resources
/ protocols

* Protocols:
— SOAP (Simple Object Access Protocol)
— XML-RPC
— WebDAV

e Resources:
— Text (plain, HTML, XHTML, ...)

— Images (qif, jpeg, ...)

4/20/2017 REST over HTTP 33

REpresentational State Tranfer

REST

4/20/2017 REST over HTTP

{REST }

34

Roy T. Fielding

Senior Principal Scientist, Adobe

Co-founder, Apache HTTP Server Project

Director, The Apache Software Foundation

Ph.D. Information and Computer Science, UC Irvine

REST

« Representational
State Transfer

« Astyle of software architecture for distributed
systems
« Platform-independent

— you don't care if the server is Unix, the client is a Mac, or
anything else

e Language-independent
— C# can talk to Java, etc.

e Standards-based
— runs on top of HTTP

« Can easily be used in the presence of firewalls

* (@fielding; Blog: Untangled
* Email- fielding at (choose one of) gbiv.com, adobe com, apache org

4/20/2017 REST over HTTP 35

WAhat is a Resource?

« Aresource can be anything that has identity
— adocument or image
— a service, e.qg., "today's weather in New York"
— a collection of other resources
— non-networked objects (e.g., people)
* The resource is the conceptual mapping to an
entity or set of entities, not necessarily the

entity that corresponds to that mapping at any
particular point in time!

4/20/2017 REST over HTTP 36

Main Principles

* Resource: source of specific information
 Mapping: Resources < URIs

« Client and server exchange representations of
the resource

— the same resource may have different
representations

— e.g., XML, JSON, HTML, RDF, ...

« Operations on the Resource is done by means
of HTTP methods
— GET, POST, PUT, DELETE

4/20/2017 REST over HTTP 37

Main Types of Resources

« Collection resource
— Represents a set (or list) of items

— Format: /resource
— e.g., http://api.polito.it/students
http://api.polito.it/courses
 Element (Iltem) resource
— Represents a single item, and its properties

— Format: /resource/identifier

— e.g., http://api.polito.it/students/s123456
http://api.polito.it/courses/01zqgp

4/20/2017 REST over HTTP

38

Best Practice

* Nouns (not verbs)
e Plural nouns

« Concrete names (not abstract)
— [courses, not /items

4/20/2017 REST over HTTP

39

Actions use HTTP Methods

 GET

— Retrieve the representation of the resource (in the HTTP
response body)

— Collection: the list of items
— Element: the properties of the element

POST

— Create a new resource (data in the HTTP request body)
— Use a URI for a Collection

. PUT

— Update an existing element (data in the HTTP request body)
— Mainly for elements' properties

DELETE

4/20/2017 REST over HTTP 40

Actions on Resources: Example

POST DELETE

/dogs List dogs Createanew Bulkupdate Delete all
dog dogs dogs
(avoid) (avoid)
/dogs/1234 Show info ERROR If exists, Delete the
about the dog update the dog #1234
with id 1234 info about
dog #1234

4/20/2017 REST over HTTP 41

Relationships

« A given Element may have a (1:1 or 1:N)
relationship with other Element(s)

« Represent with: /resource/identifier/resource

 e.qg.,
http://api.polito.it/students/s123456/courses
http://api.polito.it/courses/01gzp/students

4/20/2017 REST over HTTP 42

Representations

Returned in GET, sent in PUT/POST
Different formats are possible

Mainly: XML, JSON
— But also: SVG, JPEG, TXT, ...
— In POST: URL-encoding

Format may be specified in
— Request headers
 Accept: application/json
— URI extension
e http://api.polito.it/students/s123456. json

— Request parameter
 http://api.polito.it/students/s123456?format=json

4/20/2017 REST over HTTP 43

Real Life: GitHub API

GitHub DQ\,;eloper APl Blog Early Access Support

API

Qverview

This describes the resources that make up the official GitHub API v3. If you have any problems or
requests please contact support.

. Current Version

i. Schema

i
iv. Root Endpoint
v. Client Errors
HTTP Redirects
HTTP Verbs
viii. Authentication
ix. Hypermedia
x. Pagination
xi. Rate Limiting
. User Agent Required

xiii. Conditional requests
xiv. Cross QOrigin Resource Sharing

xv. JSON-P Callbacks

. Parameters

vi.

Vi,

i

»

Reference Webhooks Guides Libraries

Overview

Media Types

QAuth

OAuth Authorizations AP
Other Authentication Methods
Troubleshooting
Pre-release Program

API Previews

Versions

Activity

Gists

Git Data

Integrations

Issues

https://developer.github.com/v3/

https://developer.github.com/v3/

eal Life: Twitter API

Y Developers Documentation Community Build My apps

Twitter Developer Documentation

Docs / REST APls

Products & REST APIs

Services

The REST APls provide programmatic access to read and write Twitter data. Create a new Tweet, read user profile and
follower data, and more. The REST API identifies Twitter applications and users using OAuth; responses are in JSON
format.

If your intention is to monitor or process Tweets in real-time, consider using the Streaming APl instead.

Overview

Below are some documents that will help you get going with the REST APls as quickly as possible

REST APIs

= API Rate Limiting

* AP| Rate Limits

Working with Timelines
Using the Twitter Search API
» Finding Tweets about Places
Uploading Media

Reference Documentation

https://dev.twitter.com/rest/public

https://dev.twitter.com/rest/public

Real Life: Google Calendar API

\ Google - fulvio.como@gmail.com
Developers oo canarar_x JECL Sign out

Products > Google Apps

» Google Calendar API

Google Calendar APl 81 =

GUIDES

Google Calendar API
- Get Started
* Quickstarts
* Use the Calendar API
* Calendar Gadgets

CalDAV API Developer's
Guide

REFERENCE
Resource Summary

* Acl

- CalendarList

* Calendars

* Channels

* Colors

* Events

* Freebusy

* Settings

Usage Limits

What's New in v3

Write Feedback

AP| Reference

This APl reference is organized by resource type. Each resource type has one or more data representations and one or mere methods.

Resource types

Acl
CalendarList
Calendars
Channels
Colors
Events
Freebusy

Settings

Acl

For Acl Resource details, see the resource representation page.

URIs relative to https://www.googleapis.com/calendar/v3, unless otherwise noted

delete DELETE /calendars/calendarid/acl/ruleid Deletes an acecess control rule.
get GET /calendars/calendarId/acl/ruleId Returns an access control rule.
insert POST /calendars/calendarId/acl Creates an access control rule.
list GET /calendars/calendarId/acl Returns the rules in the access control list for the calendar.

https://developers.google.com/google-apps/calendar/v3/reference/

https://developers.google.com/google-apps/calendar/v3/reference/

Real life: Facebook Graph API

Developers

My Apps

Products Docs Tools & Support

News

Messenger

Payments for Games

Sharing

Social Plugins

App Development

APls and SDKs

Graph API
Using the Graph API
Reference
Common Scenarios
Other APls

Advanced

i0S SDK

Android SDK

JavaScript SDK

PHP SDK

Unity SDK

m

The Graph API

The primary way for apps to read and write fo the Facebook social graph. The Graph API has multiple
versions available, read about what has changed and how to upgrade from older versions.

Overview
Learn how the Graph AP is structured. how
versioning works and what access tokens are.

Using the Graph API

Learn how to publish to and retrieve data from
Facebook using the Graph API.

Staying up to date

APl Reference
Get the full details of all the nodes, edges, and
fields in the latest version of the Graph API.

Graph APl and SDKs

Learn how to use our iOS, Android, JavaScript,
PHP SDKs with the Graph API. Third-party SDKs
are also available.

The current, latest version of the Graph APl is v2.3. Apps calling v1.0 have until April 30, 2015 to

upgrade to v2.0 or later.

To prevent broken experiences for people using your app. we strongly recommend to upgrade your
apps to the latest current version at the earliest opportunity.

Roadmap
The full list of announced breaking changes and
additions to our APIs and SDKs.

Versions and Migrations

Update your code to call a specific APl version in
order to get two years of stability for Core APIs.
Use migrations to change the behaviour of an old
API version.

Changelog
See what has changed in Facebook's APIs and
SDKs.

Upgrade Guide
Detailed information about how to upgrade from
older versions.

https://developers.facebook.com/docs/graph-api

https://developers.facebook.com/docs/graph-api

Complex resource search

« Use ?parameter=value for more advanced
resource filtering (or search)

— E.qg,,
https://api.twitter.com/1.1/statuses/user t
imeline.json?screen_name=twitterapi&count=2

4/20/2017 REST over HTTP 48

Errors

« When errors or exceptions are encountered, use
meaningful HTTP Status Codes

— The Response Body may contain additional
information (e.qg., informational error messages)

{

"developerMessage" : "Verbose, plain language description of
the problem for the app developer with hints about how to fix
it.",

"userMessage":"Pass this message on to the app user if
needed.",

"errorCode" : 12345,

"more info": "http://dev.teachdogrest.com/errors/12345"

}

4/20/2017 REST over HTTP 49

Authentication

Twitter Streaming API

Authorization: OAuth

oauth_consumer_key="xvzlevFS4AwEEPTGEFPHBog", ..

Amazon Web Services API

Authorization: AWS

AKIATOSFODNN7EXAMPLE : frJIUNo//yllqgDzg=

Google API

4/20/2017 REST over HTTP

50

Guidelines

« Design with standards in mind - for example
RSS & ATOM

e Createshould return URIs not resources

« Use the right HTTP methods for the right
actions

e You areon HTTP —use the infrastructure
— Proxy, Caching, Etag, Expires

4/20/2017 REST over HTTP 51

: :
e Guidelines

Plural nouns for collections
ID For entity

Associations

HTTP Methods

Bias toward concrete names
Multiple Formats in URL

Paginate with limit and
offset

Query params
Partial selection
Use medial capitalization

Use verbs for non-resource
requests

Search
DNS

2/20/2017

/dogs

/dogs/1234 (1 /2)
Jowners/5678/dogs

POST GET PUT DELETE

/dogs (not animals)

/dogs.json
/dogs.xml

?limit=10&offset=0

?color=red&state=running
?fields=name,state

"createdAt": 1320296464
myObject.createdAt;

/convert?from=EUR&to=CNY&amount=100

/search?q=happy%2Blabrador

api.foo.com
REST over HTTP 52

developers.foo.com

AT N G uidelines

Include version in URL /v1/dogs

Keep one previous version long /v1/dogs (2/2)

enough for developers to migrate /v2/dogs

Status Codes 200201 304 400 401 403 404 500

n, n

Verbose messages {"msg": "verbose, plain language hints"}

Client Considerations

Client does not support HTTP ?suppress_response_codes=true
status codes

Client does not support HTTP GET /dogs?method=post
methods GET /dogs
GET /dogs?method=put
GET /dogs?method=delete
Complement API with SDK and 1. JavaScript

code libraries g

4/20/2017 REST over HTTP 53

Resources

. HTTP

http://www.w3.org/Protocols/

Hypertext Transfer Protocol -- HTTP/1.1:
http://tools.ietf.org/html/rfc2616

 REST

4/20/2017

http://en.wikipedia.org/wiki/Representational_state transfer

R. Fielding, Architectural Styles and
the Design of Network-based Software Architectures,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Learn REST: A Tutorial: http://rest.elkstein.org/

https://pages.apigee.com/ebook-web-api-design-
registration.html

http://www.slideshare.net/apigee/api-design-3rd-edition
groups.google.com/group/api-craft

REST over HTTP 54

Resources

 REST

— http://en.wikipedia.org/wiki/Representational state tran
sfer

— R. Fielding, Architectural Styles and
the Design of Network-based Software Architectures,

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.ht
m

— https://pages.apigee.com/ebook-web-api-design-
reqgistration.html

— http://www.slideshare.net/apigee/api-design-3rd-edition
— https://cloud.google.com/apis/design/

4/20/2017 REST over HTTP 55

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://pages.apigee.com/ebook-web-api-design-registration.html
http://www.slideshare.net/apigee/api-design-3rd-edition
https://cloud.google.com/apis/design/

Resources

« JSON
— http://json.org

— ECMA-404 The JSON Data Interchange Standard.
http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-
404.pdf

. HTTP

— http://www.w3.org/Protocols/

— Hypertext Transfer Protocol -- HTTP/1.1:
http://tools.ietf.org/html/rfc2616

4/20/2017 REST over HTTP 56

http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/Protocols/
http://tools.ietf.org/html/rfc2616

Questions?

01QZP AMBIENT INTELLIGENCE

Luigi De Russis and Fulvio Corno
luigi.derussis@polito.it
fulvio.corno@polito.it

- S@:\E e-Lite SI.HEFIIHEEH'I'EIJ L—M@ G)@@

License

« Thiswork is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 4.0)" License.
* You are free:
— to Share - to copy, distribute and transmit the work
— to Remix - to adapt the work

« Under the following conditions:

— Attribution - You must attribute the work in the manner specified by the
@ author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

— Noncommercial - You may not use this work for commercial purposes.

— Share Alike - If you alter, transform, or build upon this work, you may
@ distribute the resulting work only under the same or similar license to this
one.
« To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/

4/20/2017 REST over HTTP 58

https://creativecommons.org/licenses/by-nc-sa/4.0/

