
Ontologies
OWL2

Why Ontologies?

2019-01-21 01RRDIU - Semantic Web 2

Knowledge Organizazion Systems

• Term Lists
– Authority files
– Glossaries
– Dictionaries, Vocabularies
– Gazetteers

• Classifications and Categories
– Subject headings
– Classification schemes
– Taxonomies
– Categorization Schemes.

• Relationship Lists
– Thesauri
– Semantic networks
– Ontologies

2019-01-21 01RRDIU - Semantic Web 3

Se
m

an
ti

cs

RDF / RDF Schema

01RRDIU - Semantic Web 42019-01-21

2019-01-21 01RRDIU - Semantic Web 5

RDFS problems

• RDFS is too “weak” to describe resources with a suitable
level of details
– range and domain cannot be localized (e.g. the range of hasChild

is a person when applied to a person, elephant when applied to
an elephant)

– no constraints on existence or cardinality (e.g. all instances of
persons have one and only one mother which is a person, and
have exactly two parents)

– it is not possible to define transitive, inverse or symmetrical
statements (e.g. part of is a transitive property, hasPart is the
inverse of isPartOf, touches is symmetrical)

• Reasoning is not well supported
– Non standard semantics, no native reasoner exists

2019-01-21 01RRDIU - Semantic Web 6

Requirements for an ontology
language

• Extend existing Web standards

– XML, RDF, RDFS, ...

• Easy to understand and to use

– based on well known knowledge representation (KR)
languages

• Formally specified

• Adequate expressive power

• Automatic support for reasoning

2019-01-21 01RRDIU - Semantic Web 7

Modeling knowledge

• OWL 2 is a knowledge representation language, designed to
formulate, exchange and reason with knowledge about a
domain of interest

• Basic notions
– Axioms: the basic statements that an OWL ontology expresses
– Entities: elements used to refer to real-world objects
– Expressions: combinations of entities to form complex descriptions

from basic ones

• The results of the modeling processes are called ontologies
• Knowledge consists of elementary pieces that are often

referred to as statements or propositions
• Statements that are made in an ontology are called axioms in

OWL 2

2019-01-21 01RRDIU - Semantic Web 8

Modeling knowledge

• When humans think, they draw consequences from their knowledge
• A statement is a consequence of other statements essentially means

that this statement is true whenever the other statements are
• In OWL terms: “a set of statements A entails a statement a if in any

state of affairs wherein all statements from A are true, also a is true”
• A set of statements may be

– Consistent, if there is a possible state of affairs in which all the statements
in the set are jointly true

– Inconsistent, if there is no such state of affairs

• The formal semantics of OWL specifies, in essence, for which
possible “states of affairs” a particular set of OWL statements is true

2019-01-21 01RRDIU - Semantic Web 9

What's in an Ontology?

• Classes

• Instances

• Properties

– Object Properties

– DataType Properties

• Restrictions

• Annotations

• Different ontology
standards use slightly
differing terminology

2019-01-21 01RRDIU - Semantic Web 10

“History” of Web languages

2019-01-21 01RRDIU - Semantic Web 11

XML

XOL SHOE OML RDF(S)

OIL

OWL

DAML+OIL
bioinformatics
community

University of
Maryland

University of
Washington

IST EU project
OntoKnowledge

W3C

DARPA

Web Ontology Language (OWL)

• Semantic Web language designed to represent rich and complex
knowledge about things, groups of things, and relations between
things

• Computational logic-based language such that knowledge expressed
in OWL can be reasoned with by computer programs either to verify
the consistency of that knowledge or to make implicit knowledge
explicit

• OWL documents, known as ontologies, can be published in the
World Wide Web and may refer to or be referred from other OWL
ontologies

• OWL is not a programming language
– it is declarative, i.e. it describes a state of affairs in a logical way

• OWL: W3C Recommendation, Feb 10th 2004
• OWL 2: Revised W3C Recommendation, October 27th 2009

2019-01-21 01RRDIU - Semantic Web 12

Web Ontology Language (OWL)

• More expressive than RDFS
– Identity equivalence/difference

– sameAs, differentFrom, equivalentClass/Property

• More expressive class definitions
– Class intersection, union, complement, disjointness

– Cardinality restrictions

• More expressive property definitions
– Object/Datatype properties

– Transitive, functional, symmetric, inverse properties

– Value restrictions

2019-01-21 01RRDIU - Semantic Web 13

Web Ontology Language (OWL)

• What can be done with OWL?

– Consistency checks – are there contradictions in the logical
model?

– Satisfiability checks – are there classes that cannot have
any instances?

– Classification – what is the type of a particular instance?

2019-01-21 01RRDIU - Semantic Web 14

OWL basics

• Statements in OWL normally refer to objects of the world
and describe them by putting them into categories (like
“Mary is female”) or saying something about their
relation (“John and Mary are married”)

• All atomic constituents of statements, be they objects
(John, Mary), categories (female) or relations (married)
are called entities

• In OWL 2
– objects are called “individuals”

– categories are called “classes”

– relations are called “properties”

2019-01-21 01RRDIU - Semantic Web 15

OWL basics

• Properties in OWL 2 are further subdivided

– Object properties relate objects to objects (like a person to
their spouse)

– Datatype properties assign data values to objects (like an
age to a person)

– Annotation properties are used to encode information
about (parts of) the ontology itself (like the author and
creation date of an axiom) instead of the domain of
interest

2019-01-21 01RRDIU - Semantic Web 16

OWL basics

• Names of entities can be combined into expressions using
so called constructors
– As a basic example, the atomic classes “female” and “professor”

could be combined conjunctively to describe the class of female
professors

– The latter would be described by an OWL class expression, that
could be used in statements or in other expressions

• Expressions can be seen as new entities which are
defined by their structure
– In OWL, the constructors for each sort of entity vary greatly

– The expression language for classes is very rich and sophisticated

– The expression language for properties is much less so

2019-01-21 01RRDIU - Semantic Web 17

OWL Main Assumptions

• Open World Assumption

• «The truth of a statement is independent of whether
it is known»

• Not knowing whether a statement is explicitly true
does not imply that the statement is false, it is simply
unknown (or not-yet-known)

• New information must always be additive (even if
contradictory)

2019-01-21 01RRDIU - Semantic Web 18

OWL Main Assumptions

• No Unique Names Assumption

• «Unless explicitly stated otherwise, you cannot
assume that resources that are identified by different
URIs are different»

• Both Classes and Individuals

2019-01-21 01RRDIU - Semantic Web 19

OWL2 syntax and semantic

2019-01-21 01RRDIU - Semantic Web 20

OWL Building Blocks

Main

• Class
– a set of resources

• Individual
– any resource that is a

member of at least one class

• Property
– used to describe a resource

Other

• Headers
– define and describe the the

ontology itself

• Annotations
– add nonsemantic descriptive

information

• Datatype definitions
– describe ranges of values

2019-01-21 01RRDIU - Semantic Web 21

Classes and Individuals

• A class is a special kind of resource that represents a
set of resources that share common characteristics or
are similar in some way

• A resource that is a member of a class is called an
individual and represents an instance of that class

• Warning: Both are resources, no strict division
(depends on the modeling approach)

2019-01-21 01RRDIU - Semantic Web 22

Example

• ex:Person is a class (of
type owl:Class)

• ex:Ryan and ex:Andrew
are instances of the
class ex:Person

• Unless you examine the
rdf:type, you cannot
determine

2019-01-21 01RRDIU - Semantic Web 23

Example

2019-01-21 01RRDIU - Semantic Web 24

• In Description Logic:
• Class

– Metamodeling level

• Person
– T-Box level
– terminology box
– TBox statements describe a

conceptualization, a set of
concepts and properties for
these concepts

• Ryan, Andrew
– A-Box level
– assertion box
– a fact associated with a

terminological vocabulary

Class Membership

• Individuals can become members of classes

– Directly
• by asserting their membership explicitly

• ex:Ryan rdf:type ex:Person .

– Indirectly
• by defining the membership conditions for a class such that it can

be inferred that a resource is a member of that class

• more powerful, may lead to discovery of new facts

2019-01-21 01RRDIU - Semantic Web 25

Properties

• A property in OWL is a resource that is used as a
predicate in statements that describe individuals

• Object properties link individuals to other individuals

• Datatype properties link individuals to literal values

2019-01-21 01RRDIU - Semantic Web 26

Example

• ex:knows

– Object Property

• ex:name

– Datatype property

2019-01-21 01RRDIU - Semantic Web 27

OWL2 syntaxes

• Various syntaxes available for OWL, to serve various
purposes

• Functional-Style syntax
– Designed to be easier for specification purposes and to provide a

foundation for the implementation of OWL 2 tools such as APIs
and reasoners

• RDF/XML syntax
– Just RDF/XML, with a particular translation for the OWL

constructs
– This is the only syntax that is mandatory to be supported by all

OWL 2 tools

• Turtle syntax
– Turtle serializations for the RDF-based syntax

2019-01-21 01RRDIU - Semantic Web 28

OWL2 syntaxes

• Manchester syntax

– Designed to be easier for non-logicians to read

• OWL/XML syntax

– an XML syntax for OWL defined by an XML schema

• There are tools that can translate between the
different syntaxes

2019-01-21 01RRDIU - Semantic Web 29

Elements of an Ontology

• Ontology Header
• Annotations
• Basic Classification

– Classes and Individuals
– rdfs:SubClassOf
– owl:Thing and owl:Nothing

• Defining and Using Properties
• Property Domain and Range
• Describing Properties

– rdfs:subPropertyOf
– Top and Bottom Properties
– Inverse Properties
– Disjoint Properties
– Property Chains
– Symmetric, Reflexive, and Transitive

Properties
– Functional and Inverse Functional Properties
– Keys

• Datatypes
– Data type Restrictions
– Defining Datatypes in Terms of Other

Datatypes

• Negative Property Assertions
• Property Restrictions

– Value Restrictions
– Cardinality Restrictions
– Qualified Cardinality Restrictions

• Advanced Class Description
– Enumerating Class Membership
– Set Operators
– Disjoint Classes

• Equivalence in OWL
– Equivalence among Individuals
– Equivalence among Classes and Properties

2019-01-21 01RRDIU - Semantic Web 30

Ontology header

• Ontology declaration (XML syntax)

• Ontology metadata (information about the ontology)

2019-01-21 01RRDIU - Semantic Web 31

<rdf:RDF xmlns:owl =http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

Ontology imports

• The property owl:imports specifies the set of
ontologies that are referred to in the importing
ontology.

2019-01-21 01RRDIU - Semantic Web 32

Annotations

• Statements that describe resources using "annotation
properties"

• Annotation properties are semantics-free properties

• Can describe any resource or axiom in an ontology,
including the ontology itself

• Annotation properties are primarily used by tools and
applications to interact with humans

2019-01-21 01RRDIU - Semantic Web 33

Annotation properties

2019-01-21 01RRDIU - Semantic Web 34

owl:Class

• The resource owl:Class represents the class
containing all OWL classes

• Every class in OWL must be a member of owl:Class

• Every resource that has an rdf:type of owl:Class is a
class.

2019-01-21 01RRDIU - Semantic Web 35

Classes and instances

• Example: “Mary is a person”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 36

ClassAssertion(:Person :Mary)

<Person rdf:about="Mary"/>

:Mary rdf:type :Person .

Individual: Mary

Types: Person

<ClassAssertion>

<Class IRI="Person"/>

<NamedIndividual IRI="Mary"/>

</ClassAssertion>

Example

2019-01-21 01RRDIU - Semantic Web 37

Class extension

• The set of individuals that are members of a class is
considered its class extension

• An individual may belong to the extension of
different classes

• An OWL class has intrinsic meaning beyond its class
extension: two classes can have exactly the same
class extension but still represent unique classes
(extension equivalence is not a sufficient condition
for class equivalence)

2019-01-21 01RRDIU - Semantic Web 38

Class restrictions

• Additional information about the class is given in the
form of restrictions, constructs that restrict the
membership of the class

– subclass relationships

– explicit membership enumeration

– property restrictions

– class-based set operations

2019-01-21 01RRDIU - Semantic Web 39

Class hierarchies

• Example: “Woman is a subclass of Person”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 40

SubClassOf(:Woman :Person)

<owl:Class rdf:about="Woman">

<rdfs:subClassOf rdf:resource="Person"/>

</owl:Class>

:Woman rdfs:subClassOf :Person .

Class: Woman

SubClassOf: Person

<SubClassOf>

<Class IRI="Woman"/>

<Class IRI="Person"/>

</SubClassOf>

Example

2019-01-21 01RRDIU - Semantic Web 41

Subclass or Instance?

• Depends on the modeling context

• A subclass represents a subset of the members of the
parent class

• An instance represents an individual member of a
class

2019-01-21 01RRDIU - Semantic Web 42

Thing and Nothing

• No class can be more
general than owl:Thing
or more specific than
owl:Nothing

• Every OWL class is
implicitly a subclass of
owl:Thing

• owl:Nothing is implicitly
a subclass of every OWL
class

2019-01-21 01RRDIU - Semantic Web 43

Properties

Object properties

• Domain: Individuals of a
(named or implicit) class

• Range: Individuals of a
(named or implicit) class

• owl:ObjectProperty

Datatype properties

• Domain: Individuals of a
(named or implicit) class

• Range: Literals (possibly
typed)

• owl:DatatypeProperty

2019-01-21 01RRDIU - Semantic Web 44

Object properties

• Example: “Mary is John’s wife”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 45

ObjectPropertyAssertion(:hasWife :John :Mary)

<rdf:Description rdf:about="John">

<hasWife rdf:resource="Mary"/>

</rdf:Description>

:John :hasWife :Mary .

Individual: John

Facts: hasWife Mary

<ObjectPropertyAssertion>

<ObjectProperty IRI="hasWife"/>

<NamedIndividual IRI="John"/>

<NamedIndividual IRI="Mary"/>

</ObjectPropertyAssertion>

Datatypes properties

• Example: “John’s age is 51”
• Functional-Style Syntax

• RDF/XML Syntax
•

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 46

DataPropertyAssertion(:hasAge :John "51"^^xsd:integer)

<Person rdf:about="John">

<hasAge rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">51</hasAge>

</Person>

:John :hasAge 51 .

Individual: John

Facts: hasAge "51"^^xsd:integer

<DataPropertyAssertion>

<DataProperty IRI="hasAge"/>

<NamedIndividual IRI="John"/>

<Literal datatypeIRI="

http://www.w3.org/2001/

XMLSchema#integer">51</Literal>

</DataPropertyAssertion>

Example

2019-01-21 01RRDIU - Semantic Web 47

Domain and Range

• Property restrictions:

• rdfs:domain —Specifies the type of all individuals
who are the subject of statements using the property
being described

• rdfs:range —Specifies the type of all individuals (or
the datatype of all literals) that are the object of
statements using the property being described

• Warning: they are globally asserted relationships

2019-01-21 01RRDIU - Semantic Web 48

Domain and range restrictions

• Example: “if B is the wife of A, B is a woman and A is a man”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

2019-01-21 01RRDIU - Semantic Web 49

ObjectPropertyDomain(:hasWife :Man)

ObjectPropertyRange(:hasWife :Woman)

<owl:ObjectProperty rdf:about="hasWife">

<rdfs:domain rdf:resource="Man"/>

<rdfs:range rdf:resource="Woman"/>

</owl:ObjectProperty>

:hasWife

rdfs:domain :Man ;

rdfs:range :Woman .

Domain and range restrictions

• Example: “if B is the wife of A, B is a woman and A is
a man”

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 50

ObjectProperty: hasWife

Domain: Man

Range: Woman

<ObjectPropertyDomain>

<ObjectProperty IRI="hasWife"/>

<Class IRI="Man"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<ObjectProperty IRI="hasWife"/>

<Class IRI="Woman"/>

</ObjectPropertyRange>

Property hierarchies

• Example: “hasWife is a subproperty of hasSpouse”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 51

SubObjectPropertyOf(:hasWife :hasSpouse)

<owl:ObjectProperty rdf:about="hasWife">

<rdfs:subPropertyOf rdf:resource="hasSpouse"/>

</owl:ObjectProperty>

:hasWife rdfs:subPropertyOf :hasSpouse .

ObjectProperty: hasWife

SubPropertyOf: hasSpouse

<SubObjectPropertyOf>

<ObjectProperty IRI="hasWife"/>

<ObjectProperty IRI="hasSpouse"/>

</SubObjectPropertyOf>

Example

2019-01-21 01RRDIU - Semantic Web 52

Top & Bottom properties

owl:topObjectProperty owl:topDataProperty

connects all possible pairs of individuals connects all possible individuals with all
literals

owl:bottomObjectProperty owl:bottomDataProperty

connects no pairs of individuals does not connect any individual with a
literal

2019-01-21 01RRDIU - Semantic Web 53

Inverse properties

• Inverse properties

2019-01-21 01RRDIU - Semantic Web 54

<owl:ObjectProperty rdf:about="hasParent">

<owl:inverseOf rdf:resource="hasChild"/>

</owl:ObjectProperty>

Disjoint properties

• Disjoint properties

– Example: parent-child marriages cannot occur

2019-01-21 01RRDIU - Semantic Web 55

<rdf:Description rdf:about="hasParent">

<owl:propertyDisjointWith rdf:resource="hasSpouse"/>

</rdf:Description>

Disjoint properties

• May declare a group of properties as mutually
disjoint with owl:AllDisjointProperties

2019-01-21 01RRDIU - Semantic Web 56

Property chains

• Example: definition of the hasGrandparent property

– We want hasGrandparent to connect all individuals that are
linked by a chain of exactly two hasParent properties

2019-01-21 01RRDIU - Semantic Web 57

<rdf:Description rdf:about="hasGrandparent">

<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="hasParent"/>

<owl:ObjectProperty rdf:about="hasParent"/>

</owl:propertyChainAxiom>

</rdf:Description>

Property Chains: Example

2019-01-21 01RRDIU - Semantic Web 58

Property Classes

2019-01-21 01RRDIU - Semantic Web 59

Symmetric, Reflexive, and Transitive
Properties

• Symmetric and asymmetric properties

• Reflexive and irreflexive properties

• Transitive properties

2019-01-21 01RRDIU - Semantic Web 60

<owl:SymmetricProperty rdf:about="hasSpouse"/>

...

<owl:AsymmetricProperty rdf:about="hasChild"/>

<owl:ReflexiveProperty rdf:about="hasRelative"/>

...

<owl:IrreflexiveProperty rdf:about="parentOf"/>

<owl:TransitiveProperty rdf:about="hasAncestor"/>

Functional and Inverse Functional
Properties

• Functional and inverse functional properties

– Example: every individual can be linked by the hasHusband
property to at most one other individual

2019-01-21 01RRDIU - Semantic Web 61

<owl:FunctionalProperty rdf:about="hasHusband"/>

...

<owl:InverseFunctionalProperty rdf:about="hasHusband"/>

Keys

• A collection of (data or object) properties can be
assigned as a key to a class expression

– This means that each named instance of the class
expression is uniquely identified by the set of values which
these properties attain in relation to the instance

• Example: the identification of a person by her social
security number

2019-01-21 01RRDIU - Semantic Web 62

<owl:Class rdf:about="Person">

<owl:hasKey rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="hasSSN"/>

</owl:hasKey>

</owl:Class>

Multiple keys

2019-01-21 01RRDIU - Semantic Web 63

DataTypes

• Numeric— xsd:integer , xsd:float , xsd:real ,
xsd:decimal

• String— xsd:string, xsd:token, xsd:language

• Boolean— xsd:Boolean

• URI— xsd:anyUri

• XML— rdf:XMLLiteral

• Time— xsd:dateTime

• …plus many others

2019-01-21 01RRDIU - Semantic Web 64

DataType restrictions

2019-01-21 01RRDIU - Semantic Web 65

DataType combination

• New DataTypes may be derived by existing ones
through

– owl:intersectionOf

– owl:unionOf

– owl:datatypeComplementOf

2019-01-21 01RRDIU - Semantic Web 66

Enumerated DataTypes

• Define a datatype as consisting of an enumeration of
(literal) values using

– owl:oneOf

2019-01-21 01RRDIU - Semantic Web 67

Object properties – negative assertion

• Example: “Mary is not Bill’s wife”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

2019-01-21 01RRDIU - Semantic Web 68

NegativeObjectPropertyAssertion(:hasWife :Bill :Mary)

<owl:NegativePropertyAssertion>

<owl:sourceIndividual rdf:resource="Bill"/>

<owl:assertionProperty rdf:resource="hasWife"/>

<owl:targetIndividual rdf:resource="Mary"/>

</owl:NegativePropertyAssertion>

[] rdf:type owl:NegativePropertyAssertion ;

owl:sourceIndividual :Bill ;

owl:assertionProperty :hasWife ;

owl:targetIndividual :Mary .

Object properties – negative assertion

• Example: “Mary is not Bill’s wife”

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 69

Individual: Bill

Facts: not hasWife Mary

<NegativeObjectPropertyAssertion>

<ObjectProperty IRI="hasWife"/>

<NamedIndividual IRI="Bill"/>

<NamedIndividual IRI="Mary"/>

</NegativeObjectPropertyAssertion>

Examples

Negative Object Property
Assertion

Negative DataType Property
Assertion

2019-01-21 01RRDIU - Semantic Web 70

Property Restrictions

• Describe properties within the context of a specific
class

• You can specify how a property is to be used when it
is applied to an instance of a particular class

• A property restriction describes the class of
individuals that meet the specified property-based
conditions

• owl:Restriction

2019-01-21 01RRDIU - Semantic Web 71

Value Restrictions

2019-01-21 01RRDIU - Semantic Web 72

Universal quantification

• Property restriction used to describe a class of
individuals for which all related individuals must be
instances of a given class

• Example: “somebody is a happy person if all their
children are happy persons”

• RDF/XML Syntax

2019-01-21 01RRDIU - Semantic Web 73

<owl:Class rdf:about="HappyPerson"/>

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="hasChild"/>

<owl:allValuesFrom rdf:resource="HappyPerson"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

Existential quantification

• Property restriction that defines a class as the set of all
individuals that are connected via a particular property to
another individual which is an instance of a certain class

• Example: “the class of Parents is the class of individuals
that are linked to a Person by the hasChild property”

• RDF/XML Syntax

2019-01-21 01RRDIU - Semantic Web 74

<owl:Class rdf:about="Parent">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="hasChild"/>

<owl:someValuesFrom rdf:resource="Person"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

hasValue restriction

• Limits the individuals that may be the target of the
property to those identified by one specific value

• Example: the class of John’s children

2019-01-21 01RRDIU - Semantic Web 75

<owl:Class rdf:about="JohnsChildren">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="hasParent"/>

<owl:hasValue rdf:resource="John"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

Self-restriction

• Refer to the class of all individuals that are related to
themselves using that property

• Example: narcisistic persons

2019-01-21 01RRDIU - Semantic Web 76

<owl:Class rdf:about="NarcisticPerson">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="loves"/>

<owl:hasSelf rdf:datatype="&xsd;boolean"> true </owl:hasSelf>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

Cardinality Restrictions

• Specify in very precise terms how many times a
property can be used to describe an instance of a
class

2019-01-21 01RRDIU - Semantic Web 77

Cardinality restrictions

• Used to specify the number of individuals involved in
the restriction

• Example: “John has at most four children who are
themselves parents”

2019-01-21 01RRDIU - Semantic Web 78

<rdf:Description rdf:about="John">

<rdf:type>

<owl:Restriction>

<owl:maxQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">

4

</owl:maxQualifiedCardinality>

<owl:onProperty rdf:resource="hasChild"/>

<owl:onClass rdf:resource="Parent"/>

</owl:Restriction>

</rdf:type>

</rdf:Description>

Example

2019-01-21 01RRDIU - Semantic Web 79

Complex
example

2019-01-21 01RRDIU - Semantic Web 80

Qualified Cardinality restrictions

• Used to specify the number of individuals involved in
the restriction

2019-01-21 01RRDIU - Semantic Web 81

Qualified Cardinality restrictions

• Example: “John has 5 children”

2019-01-21 01RRDIU - Semantic Web 82

<rdf:Description rdf:about="John">

<rdf:type>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

5

</owl:cardinality>

<owl:onProperty rdf:resource="hasChild"/>

</owl:Restriction>

</rdf:type>

</rdf:Description>

Enumeration of individuals

• A very straightforward way to describe a class is just
to enumerate all its instances

– “closed classes” or enumerated sets

• No individual that is not listed in the enumeration can
become a member of this class.

• An individual that is included in a class membership
enumeration is implicitly a member of that class

2019-01-21 01RRDIU - Semantic Web 83

Example

• Example: a class of birthday guests

2019-01-21 01RRDIU - Semantic Web 84

<owl:Class rdf:about="MyBirthdayGuests">

<owl:equivalentClass>

<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<rdf:Description rdf:about="Bill"/>

<rdf:Description rdf:about="John"/>

<rdf:Description rdf:about="Mary"/>

</owl:oneOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Example

2019-01-21 01RRDIU - Semantic Web 85

Set Operators

• Set operations can be used to describe the
membership of a class in terms of the extensions of
other classes

2019-01-21 01RRDIU - Semantic Web 86

Intersection of two classes

• Example: “Mothers are Women that are also Parents”

• Functional-Style
Syntax

• RDF/XML
Syntax

• Turtle Syntax

2019-01-21 01RRDIU - Semantic Web 87

EquivalentClasses(

:Mother

ObjectIntersectionOf(:Woman :Parent)

)

<owl:Class rdf:about="Mother">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Woman"/>

<owl:Class rdf:about="Parent"/>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

:Mother owl:equivalentClass [

rdf:type owl:Class ;

owl:intersectionOf (:Woman :Parent)

] .

Intersection of two classes

• Example: “Mothers are Women that are also Parents”

• Manchester
Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 88

Class: Mother

EquivalentTo: Woman and Parent

<EquivalentClasses>

<Class IRI="Mother"/>

<ObjectIntersectionOf>

<Class IRI="Woman"/>

<Class IRI="Parent"/>

</ObjectIntersectionOf>

</EquivalentClasses>

Example - Intersection

2019-01-21 01RRDIU - Semantic Web 89

Union of two classes

• Example: “Parents are the union of Mothers and
Fathers”

• RDF/XML Syntax

2019-01-21 01RRDIU - Semantic Web 90

<owl:Class rdf:about="Parent">

<owl:equivalentClass>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Mother"/>

<owl:Class rdf:about="Father"/>

</owl:unionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Example – Union

2019-01-21 01RRDIU - Semantic Web 91

Complement of a class

• Example: “A ChildlessPerson is a Person that is not a
Parent”

• RDF/XML Syntax

2019-01-21 01RRDIU - Semantic Web 92

<owl:Class rdf:about="ChildlessPerson">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person"/>

<owl:Class>

<owl:complementOf rdf:resource="Parent"/>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Use of complex classes in assertions

• Example: “Jack is a Person but not a Parent”

• RDF/XML Syntax

2019-01-21 01RRDIU - Semantic Web 93

<rdf:Description rdf:about="Jack">

<rdf:type>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person"/>

<owl:Class>

<owl:complementOf rdf:resource="Parent"/>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

</rdf:type>

</rdf:Description>

Class disjointness

• Example: “Man and women are disjoint classes”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 94

DisjointClasses(:Woman :Man)

<owl:AllDisjointClasses>

<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="Woman"/>

<owl:Class rdf:about="Man"/>

</owl:members>

</owl:AllDisjointClasses>

[] rdf:type owl:AllDisjointClasses ;

owl:members (:Woman :Man) .

DisjointClasses: Woman, Man

<DisjointClasses>

<Class IRI="Woman"/>

<Class IRI="Man"/>

</DisjointClasses>

Example (3 different syntaxes)

2019-01-21 01RRDIU - Semantic Web 95

Equivalence in OWL

• For individuals:

– owl:sameAs

– owl:differentFrom
• Remember the No Unique Names Assumption!

• For classes:

– owl:equivalentClass

• For properties

– owl:equivalentProperty

2019-01-21 01RRDIU - Semantic Web 96

Equality of individuals

• Example: “James and Jim are the same individual”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 97

SameIndividual(:James :Jim)

<rdf:Description rdf:about="James">

<owl:sameAs rdf:resource="Jim"/>

</rdf:Description>

:James owl:sameAs :Jim .

Individual: James

SameAs: Jim

<SameIndividual>

<NamedIndividual IRI="James"/>

<NamedIndividual IRI="Jim"/>

</SameIndividual>

Inequality of individuals

• Example: “John and Bill are not the same individual”
– Lack of the “unique names assumption”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 98

DifferentIndividuals(:John :Bill)

<rdf:Description rdf:about="John">

<owl:differentFrom rdf:resource="Bill"/>

</rdf:Description>

:John owl:differentFrom :Bill .

Individual: John

DifferentFrom: Bill

<DifferentIndividuals>

<NamedIndividual IRI="John"/>

<NamedIndividual IRI="Bill"/>

</DifferentIndividuals>

Example (AllDifferent syntax)

2019-01-21 01RRDIU - Semantic Web 99

Class equivalence

• Example: “Person and Human are semantically equivalent”

• Functional-Style Syntax

• RDF/XML Syntax

• Turtle Syntax

• Manchester Syntax

• OWL/XML Syntax

2019-01-21 01RRDIU - Semantic Web 100

EquivalentClasses(:Person :Human)

<owl:Class rdf:about="Person">

<owl:equivalentClass rdf:resource="Human"/>

</owl:Class>

:Person owl:equivalentClass :Human .

Class: Person

EquivalentTo: Human

<EquivalentClasses>

<Class IRI="Person"/>

<Class IRI="Human"/>

</EquivalentClasses>

Class and Property Equivalence in OWL

• When you assert that two classes are equivalent, the two classes
are treated as a single resource from then on

• All class restrictions and the class extensions are shared between
the two classes.

• This implies that all individuals who are members of either class will
implicitly become members of the other class as well.

• When you assert that two properties are equivalent, the property
• descriptions are combined.
• Every statement that uses one of the properties as a predicate

implicitly exists with the other equivalent property as a predicate as
well

2019-01-21 01RRDIU - Semantic Web 101

Tools for OWL

• Editors (http://semanticweb.org/wiki/Editors)
– Most common editor: Protégé 4

– Other tools: TopBraid Composer ($), NeOn toolkit

– Special purpose apps, esp. for light-weight ontologies (e.g.
FOAF editors)

• Reasoners (http://semanticweb.org/wiki/Reasoners)
– OWL DL: Pellet, HermiT, FaCT++, RacerPro ($)

– OWL EL: CEL, SHER, snorocket ($), ELLY (extension of IRIS)

– OWL RL: OWLIM, Jena, Oracle OWL Reasoner ($)

– OWL QL: Owlgres, QuOnto, Quill

2019-01-21 01RRDIU - Semantic Web 102

http://semanticweb.org/wiki/Editors
http://semanticweb.org/wiki/Reasoners

License

• This work is licensed under the Creative Commons “Attribution-
NonCommercial-ShareAlike Unported (CC BY-NC-SA 3,0)” License.

• You are free:
– to Share - to copy, distribute and transmit the work
– to Remix - to adapt the work

• Under the following conditions:
– Attribution - You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you
or your use of the work).

– Noncommercial - You may not use this work for commercial purposes.
– Share Alike - If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same or similar license to this
one.

• To view a copy of this license, visit
http://creativecommons.org/license/by-nc-sa/3.0/

2019-01-21 01RRDIU - Semantic Web 103

http://creativecommons.org/license/by-nc-sa/3.0/

