
JavaScript (Part 1)
“The” language of the Web

Enrico Masala

Fulvio Corno

Applicazioni Web I - Web Applications I - 2019/2020

2

Applicazioni Web I - Web Applications I - 2019/2020

https://www.codemio.com/2016/09/html5-css3-javascript-cheat-sheets.html

https://www.codemio.com/2016/09/html5-css3-javascript-cheat-sheets.html

3

Goal

• Learn JavaScript as a language

• Understand the specific semantics and programming patterns

– We assume a programming knowledge in other languages

• Updated to ES6 (2015) language features

• Supported by server-side (Node.js) and client-side (browsers) run-time
environments

Applicazioni Web I - Web Applications I - 2019/2020

4

Outline

• What is JavaScript?

• History and versions

• Language structure

• Types, variables

• Expressions

• Control structures

• Arrays

• Strings

Applicazioni Web I - Web Applications I - 2019/2020

5

WHAT IS JAVASCRIPT?

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

6

Applicazioni Web I - Web Applications I - 2019/2020

source: https://octoverse.github.com/#top-languages

https://octoverse.github.com/#top-languages

7

JavaScript

• JavaScript (JS) is a programming language

• It is currently the only programming language that a browser can
execute natively…

• … and it also run on a computer, like other programming languages
(thanks to Node.js)

• It has nothing to do with Java
– named that way for marketing reasons, only

• The first version was written in 10 days (!)
– several fundamental language decisions were made because of company politics

and not technical reasons!

Applicazioni Web I - Web Applications I - 2019/2020

8

HISTORY AND VERSIONS

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

9

Applicazioni Web I - Web Applications I - 2019/2020
https://www.slideshare.net/RafaelCasusoRomate/javascript-editions-es7-es8-and-es9-vs-v8

10
yrs

Main
target

ES9,
ES10,

…

Also: ES2015

Also: ES2016

Also: ES2017

Brendan Eich
https://www.ecma-international.org/ecma-262/

https://www.slideshare.net/RafaelCasusoRomate/javascript-editions-es7-es8-and-es9-vs-v8

10

JavaScript versions

• ECMAScript (also called ES) is the official name of JavaScript (JS) standard

• ES6, ES2015, ES2016 etc. are implementations of the standard

• All browsers used to run ECMAScript 3

• ES5, and ES2015 (=ES6) were huge versions of JavaScript

• Then, yearly release cycles started

– By the committee behind JS: TC39, backed by Mozilla, Google, Facebook, Apple,
Microsoft, Intel, PayPal, SalesForce, etc.

• ES2015 (=ES6) is covered in the following

Applicazioni Web I - Web Applications I - 2019/2020

11

Official ECMA standard (formal and unreadable)

Applicazioni Web I - Web Applications I - 2019/2020

https://www.ecma-international.org/ecma-262/

12

• V8 (Chrome V8) by Google

– used in Chrome/Chromium, Node.js and Microsoft Edge

• SpiderMonkey by Mozilla Foundation

– Used in Firefox/Gecko and SpiderNode

• ChakraCore by Microsoft

– it was used in Edge

• JavaScriptCore by Apple

– used in Safari

• Rhino by Mozilla

– written in Java

JavaScript Engines

JavaScript Fundamentals

13

Standard vs. Implementation (in browsers)

Applicazioni Web I - Web Applications I - 2019/2020

14

JS Compatibility

• JS is backwards-compatible
– once something is accepted as valid JS, there will not be a future change to the language

that causes that code to become invalid JS
– TC39 members: "we don't break the web!"

• JS is not forwards-compatible
– new additions to the language will not run in an older JS engine and may crash the

program

• strict mode was introduced to disable very old (and dangerous) sematics
• Supporting multiple versions is achieved by:

– Transpiling – Babel (https://babeljs.io) converts from newer JS syntax to an equivalent
older syntax

– Polyfilling – user- (or library-)defined functions and methods that “fill” the lack of a
feature by implementing the newest available one

Applicazioni Web I - Web Applications I - 2019/2020

https://babeljs.io/

15

Execution Environments

JS (ES6)

Server
Node.js

Linux/Unix

Windows Native

WSL2 under
Windows

Browser

Understanding PythonTutor

Applicazioni Web I - Web Applications I - 2019/2020

https://docs.microsoft.com/en-
us/windows/nodejs/setup-on-
windows

https://docs.microsoft.com/en-
us/windows/nodejs/setup-on-wsl2

https://nodejs.org/

https://nodejs.org/en/download/pa
ckage-manager/

http://pythontutor.com/javascript
.html

https://docs.microsoft.com/en-us/windows/nodejs/setup-on-windows
https://docs.microsoft.com/en-us/windows/nodejs/setup-on-wsl2
https://nodejs.org/
https://nodejs.org/en/download/package-manager/
http://pythontutor.com/javascript.html

16

PythonTutor (in JavaScript mode)

Applicazioni Web I - Web Applications I - 2019/2020

http://pythontutor.com/javascript.html

http://pythontutor.com/javascript.html

17

Browser and JS console

JavaScript Fundamentals

18

LANGUAGE STRUCTURE

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

19

Lexical structure

• One File = One JS program

– Each file is loaded independently and

– Different files/programs may communicate through global state

– The “module” mechanism extends that (provides state sharing in a clean way)

• The file is entirely parsed, and then executed from top to bottom

• Relies on a standard library

– and many additional APIs provided by the execution environment

Applicazioni Web I - Web Applications I - 2019/2020

20

Lexical structure

• JavaScript is written in Unicode (do not abuse), so it also supports non-
latin characters for names and strings
– even emoji

• Semicolons (;) are not mandatory (automatically inserted)

• Case sensitive

• Comments as in C (/*..*/ and //)

• Literals and identifiers (start with letter, $, _)

• Some reserved words

• C-like syntax

Applicazioni Web I - Web Applications I - 2019/2020

> let ööö = 'appalled'
> ööö
'appalled'

21

Semicolon (;)

• Argument of debate in the JS community

• JS inserts them as needed
– When next line starts with code that breaks the current one

– When the next line starts with }

– When there is return, break, throw, continue on its own line

• Be careful that forgetting semicolon can lead to unexpected behavior
– A newline does not automatically insert semicolon, if the next line starts with (or [, it is

interpreted as function call or array access

• We will loosely follow the Google style guide, so we will always insert
semicolons after each statement
– https://google.github.io/styleguide/jsguide.html

Applicazioni Web I - Web Applications I - 2019/2020

https://google.github.io/styleguide/jsguide.html

22

Strict Mode

• Directive introduced in ES5: "use strict" ;
– Compatible with older version (it is just a string)

• Code is executed in strict mode
– This fixes some important language deficiencies and provides stronger error checking and

security
– Examples:

• All variables must be declared
• Eliminates some JavaScript silent errors by changing them to throw errors
• Functions invoked as functions and not as methods of an object have this undefined
• Cannot define 2 or more properties or function parameters with the same name
• No octal literals (base 8, starting with 0)
• eval and arguments are keywords and cannot change their value
• ...

Applicazioni Web I - Web Applications I - 2019/2020

// first line of file
"use strict" ;
// always!!

23

TYPES, VARIABLES

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

JavaScript: The Definitive Guide, 7th Edition
Chapter 2. Types, Values, and Variables

24

Values and Types

Value

Primitive

string

"abc"

'abc'

`abc`

number

42

3.1415

boolean

true

false

null undefined

Object

Array

Function

User-
defined

Applicazioni Web I - Web Applications I - 2019/2020

Values have types.
Variables don’t.

25

Boolean, true-truthy, false-falsy, comparisons

• ‘boolean’ type with literal values: true, false

• When converting to boolean

– The following values are ‘false’
• 0, -0, NaN, undefined, null, '' (empty string)

– Every other value is ‘true’
• 3, 'false', [] (empty array), {} (empty object)

• Booleans and Comparisons

– a == b // convert types and compare results

– a === b // inhibit automatic type conversion and compare results

Applicazioni Web I - Web Applications I - 2019/2020

> Boolean(3)
true
> Boolean('')
false
> Boolean(' ')
true

26

Number

• No distinction between integers and reals

• Automatic conversions according to the operation

• There is also a distinct type "BigInt" (ES11, July 2020)

– an arbitrary-precision integer, can represent 253 numbers

– 123456789n

– With suffix ‘n’

Applicazioni Web I - Web Applications I - 2019/2020

27

Special values

• Undefined: variable declared but not initialized

– Detect with: typeof variable === 'undefined’

– void x always returns undefined

• Null: an empty value

• Null and Undefined are called nullish values

• NaN (not a Number)

– Is actually a number

– Invalid output from arithmetic operation or parse operation

Applicazioni Web I - Web Applications I - 2019/2020

28

Variables

• Variables are pure references: they refer to a value

• The same variable may refer to different values (even of different types)
at different times

• Declaring a variable:

– let

– const

– var

Applicazioni Web I - Web Applications I - 2019/2020

> v = 7 ;
7
> v = 'hi' ;
'hi'

> let a = 5
> const b = 6
> var c = 7
> a = 8
8
> b = 9
Thrown:
TypeError: Assignment to
constant variable.
> c = 10
10

29

Variable declarations

Declarator Can reassign? Can re-declare? Scope Hoisting * Note

let Yes No Enclosing block
{…}

No Preferred

const No § No Enclosing block
{…}

No Preferred

var Yes Yes Enclosing
function,
or global

Yes, to beginning
of function or file

Legacy, beware
its quirks, try not
to use

None (implicit) Yes N/A Global Yes Forbidden in
strict mode

Applicazioni Web I - Web Applications I - 2019/2020

* Hoisting = “lifting up” the definition of a variable (not
the initialization!) to the top of the current scope (e.g.,
the file or the function)

§ Prevents reassignment (a=2), does not prevent
changing the value of the referred object (a.b=2)

30

Scope

JavaScript Fundamentals

"use strict" ;

let a = 1 ;
const b = 2 ;
let c = true ;

let a = 5 ; // SyntaxError: Identifier 'a' has already been declared

31

Scope

JavaScript Fundamentals

"use strict" ;

let a = 1 ;
const b = 2 ;
let c = true ;

{ // creating a new scope...
let a = 5 ;
console.log(a) ;

}

console.log(a) ;

Each { } is called a block. 'let' and 'const' variables are block-scoped.

They exist only in their defined and inner scopes.

Typically, you don't
create a new scope in
this way!

32

Scope and Hoisting

Applicazioni Web I - Web Applications I - 2019/2020

"use strict" ;

function example(x) {
let a = 1 ;

console.log(a) ; // 1
console.log(b) ; // ReferenceError: b is not defined
console.log(c) ; // undefined

if(x>1) {
let b = a+1 ;
var c = a*2 ;

}

console.log(a) ; // 1
console.log(b) ; // ReferenceError: b is not defined
console.log(c) ; // 2

}

example(2) ;

var c ; // hoisted

33

EXPRESSIONS

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

JavaScript: The Definitive Guide, 7th Edition
Chapter 2. Types, Values, and Variables
Chapter 3. Expressions and Operators

Mozilla Developer Network
JavaScript Guide » Expressions and operators

34

Operators

• Assignment operators

• Comparison operators

• Arithmetic operators

• Bitwise operators

• Logical operators

• String operators

• Conditional (ternary) operator

• Comma operator

• Unary operators

• Relational operators

Applicazioni Web I - Web Applications I - 2019/2020

Full reference and operator precedence:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Oper
ator_Precedence#Table

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#Table

35

Assignment

• let variable = expression ; // declaration with initialization

• variable = expression ; // reassignment

Applicazioni Web I - Web Applications I - 2019/2020

36

Comparison operators

Applicazioni Web I - Web Applications I - 2019/2020

37

Automatic Type Conversions

• JS tries to apply type conversions
between primitive types, before
applying operators

• Some language constructs may
be used to “force” the desired
conversions

• Using == applies conversions

• Using === prevents conversions

Applicazioni Web I - Web Applications I - 2019/2020

Boolean

String Number

https://github.com/getify/You-Dont-Know-JS/blob/2nd-ed/types-grammar/ch4.md

n.toString()
String(n)
n+""

Any type

a.toString()
String(a)

Number(s)
+s
s-0
parseInt(s)
parseFloat(s)

truthy-falsy rule
Boolean(a)
!!a

Number(b)
true -> 1
false -> 0

https://github.com/getify/You-Dont-Know-JS/blob/2nd-ed/types-grammar/ch4.md

38

Logical operators

Applicazioni Web I - Web Applications I - 2019/2020

39

Common operators

Applicazioni Web I - Web Applications I - 2019/2020

Or string
concatenation

Useful idiom:
a||b

if a then a else b
(a, with default b)

40

Mathematical functions (Math building object)

• Constants: Math.E, Math.LN10, Math.LN2, Math.LOG10E,
Math.LOG2E, Math.PI, Math.SQRT1_2, Math.SQRT2

• Functions: Math.abs(), Math.acos(), Math.acosh(),
Math.asin(), Math.asinh(), Math.atan(), Math.atan2(),
Math.atanh(), Math.cbrt(), Math.ceil(), Math.clz32(),
Math.cos(), Math.cosh(), Math.exp(), Math.expm1(),
Math.floor(), Math.fround(), Math.hypot(), Math.imul(),
Math.log(), Math.log10(), Math.log1p(), Math.log2(),
Math.max(), Math.min(), Math.pow(), Math.random(),
Math.round(), Math.sign(), Math.sin(), Math.sinh(),
Math.sqrt(), Math.tan(), Math.tanh(), Math.trunc()

Applicazioni Web I - Web Applications I - 2019/2020

41

CONTROL STRUCTURES

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

JavaScript: The Definitive Guide, 7th Edition
Chapter 4. Statements

Mozilla Developer Network
JavaScript Guide » Control Flow and Error Handling
JavaScript Guide » Loops and Iteration

42

Conditional statements

Applicazioni Web I - Web Applications I - 2019/2020

if (condition) {
statement_1;

} else {
statement_2;

}

if (condition_1) {
statement_1;

} else if (condition_2) {
statement_2;

} else if (condition_n) {
statement_n;

} else {
statement_last;

}

switch (expression) {
case label_1:
statements_1
[break;]

case label_2:
statements_2
[break;]
…

default:
statements_def
[break;]

}

May also be a string

if truthy (beware!)

43

Loop statements

Applicazioni Web I - Web Applications I - 2019/2020

for ([initialExpression]; [condition]; [incrementExpression]) {
statement ;

}

do {
statement ;

} while (condition);

Usually declare loop
variable

while (condition) {
statement ;

}

May use break; or
continue;

44

Special ‘for’ statements

Applicazioni Web I - Web Applications I - 2019/2020

for (variable of iterable) {
statement ;

}

for (variable in object) {
statement ;

}

• Iterates the variable over all the
enumerable properties of an object

• Do not use to traverse an array (use
numerical indexes, or for-of)

• Iterates the variable over all values of
an iterable object (including Array,
Map, Set, string, arguments …)

• Returns the values, not the keys

for(let a in {x: 0, y:3}) {
console.log(a) ;

}

x
y

for(let a of [4,7]) {
console.log(a) ;

}

4
7

for(let a of "hi") {
console.log(a) ;

}

h
i

Preferred

45

Other iteration methods

• Functional programming (strongly supported by JS) allows other
methods to iterate over a collection (or any iterable object)

– a.forEach()

– a.map()

• They will be analyzed later

Applicazioni Web I - Web Applications I - 2019/2020

46

Exception handling

Applicazioni Web I - Web Applications I - 2019/2020

try {
statements ;

} catch(e) {
statements ;

}

try {
statements ;

} catch(e) {
statements ;

} finally {
statements ;

}

throw object ;

Executed in any case, at
the end of try and catch
blocks

Exception object

EvalError
RangeError
ReferenceError
SyntaxError
TypeError
URIError
DOMException

Contain fields: name,
message

47

ARRAYS

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

JavaScript: The Definitive Guide, 7th Edition
Chapter 6. Arrays

Mozilla Developer Network
JavaScript Guide » Indexed Collections

48

Arrays

• Rich of functionalities

• Elements do not need to be of the same type

• Simplest syntax: []

• Property .length

• Distinguish between methods that:

– Modify the array (in-place)

– Return a new array

Applicazioni Web I - Web Applications I - 2019/2020

49

Creating an array

Applicazioni Web I - Web Applications I - 2019/2020

let v = [] ;

let v = [1, 2, 3] ;

let v = [1, "hi", 3.1, true];

let v = Array.of(1, 2, 3) ;

let v = Array.of(1, "hi",
3.1, true) ;

Elements are indexed at
positions 0...length-1

Do not access elements
outside range

50

Adding elements

Applicazioni Web I - Web Applications I - 2019/2020

let v = [] ;
v[0] = "a" ;
v[1] = 8 ;
v.length // 2

let v = [] ;
v.push("a") ;
v.push(8) ;
v.length // 2

.push() adds at the end
of the array

.unshift() adds at the
beginning of the array

.lenght adjusts
automatically

51

Adding and Removing from arrays (in-place)

Applicazioni Web I - Web Applications I - 2019/2020

[0] [1] [2] [3] … … [n-1]

v.push(x)

v.pop()

v.unshift(x)

v.shift()

52

Copying arrays

let v = [] ;
v[0] = "a" ;
v[1] = 8 ;

let alias = v ;
alias[1] = 5 ;

JavaScript Fundamentals

?

53

Copying arrays

Applicazioni Web I - Web Applications I - 2019/2020

let v = [] ;
v[0] = "a" ;
v[1] = 8 ;

let alias = v ;
let copy = Array.from(v) ;

Array.from creates a
shallow copy

Creates an array from
any iterable object

54

Iterating over Arrays

• Iterators: for ... of, for (..;..;..)

• Iterators: forEach(f)

– f is a function that processes the element

• Iterators: every(f), some(f)

– f is a function that returns true or false

• Iterators that return a new array: map(f), filter(f)

– f works on the element of the array passed as parameter

• Reduce: exec a callback function on all items to progressively compute a
result.

Applicazioni Web I - Web Applications I - 2019/2020

Fu
n

ct
io

n
al

 s
ty

le
 (

la
te

r)

Preferred

55

Main array methods

• .concat()
– joins two or more arrays and returns a new

array.

• .join(delimiter = ',’)
– joins all elements of an array into a (new)

string.

• .slice(start_index, upto_index)
– extracts a section of an array and returns a

new array.

• .splice(index, count_to_remove,
addElement1, addElement2, ...)
– removes elements from an array and

(optionally) replaces them, in place

• .reverse()
– transposes the elements of an array, in

place

• .sort()
– sorts the elements of an array in place

• .indexOf(searchElement[, fromIndex])
– searches the array for searchElement and

returns the index of the first match

• .lastIndexOf(searchElement[,
fromIndex])
– like indexOf, but starts at the end

• .includes(valueToFind[, fromIndex])
– search for a certain value among its

entries, returning true or false

Applicazioni Web I - Web Applications I - 2019/2020

56

Destructuring assignment

• Value of the right-hand side of equal signal are extracted and stored in the
variables on the left
let [x,y] = [1,2];

[x,y] = [y,x];

var foo = ['one', 'two', 'three'];

var [one, two, three] = foo;

• Useful especially with passing and returning values from functions
let [x,y] = toCartesian(r,theta);

Applicazioni Web I - Web Applications I - 2019/2020

57

Spread operator (3 dots:...)

• Expands an interable object in its parts, when the syntax requires a
comma-separated list of elements
let [x, ...y] = [1,2,3,4]; // we obtain y == [2,3,4]

const parts = ['shoulders', 'knees’];

const lyrics = ['head', ...parts, 'and', 'toes']; // ["head", "shoulders",
"knees", "and", "toes"]

• Works on the left- and right-hand side of the assignment

Applicazioni Web I - Web Applications I - 2019/2020

58

Curiosity

• Copy by value:
– const b = Array.from(a)

• Can be emulated by
– const b = Array.of(...a)

– const b = [...a]

Applicazioni Web I - Web Applications I - 2019/2020

59

STRINGS

JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2019/2020

JavaScript: The Definitive Guide, 7th Edition
Chapter 2. Types, Values, and Variables

Mozilla Developer Network
JavaScript Guide » Text Formatting

60

Strings in JS

• A string is an immutable ordered sequence of Unicode characters

• The length of a string is the number of characters it contains (not bytes)

• JavaScript’s strings use zero-based indexing

– The empty string is the string of length 0

• JavaScript does not have a special type that represents a single character
(use length-1 strings).

• String literals may be defined with 'abc' or "abc"

– Note: when dealing with JSON parsing, only " " can be correctly parsed

Applicazioni Web I - Web Applications I - 2019/2020

61

String operations

• All operations always return new strings

• s[3]: indexing

• s1 + s2: concatenation

• s.length: number of characters

Applicazioni Web I - Web Applications I - 2019/2020

62

String
methods

Applicazioni Web I - Web Applications I - 2019/2020

63

Template literals

• Strings included in `backticks` can embed expressions delimited by ${}

• The value of the expression is interpolated into the string
– let name = "Bill";

– let greeting = `Hello ${ name }.`;

– // greeting == "Hello Bill."

• Very useful and quick for string formatting

• Template literals may also span multiple lines

Applicazioni Web I - Web Applications I - 2019/2020

64

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

