
JS in the browser
Handling web document structure

Enrico Masala

Fulvio Corno

Some slides adapted from Giovanni Malnati

Applicazioni Web I - Web Applications I - 2019/2020

2

Goal

• Loading JavaScript in the browser

• Browser object model

• Document object model

• DOM Manipulation

• DOM Styling

• Event Handling

• Performance tips

Applicazioni Web I - Web Applications I - 2019/2020

3

LOADING JS IN THE BROWSER
JS in the browser

Applicazioni Web I - Web Applications I - 2019/2020

Mozilla Deleloper Network: The Script element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

4

Loading Javascript in the browser

• JS must be loaded from an HTML document

• <script> tag

– Inline

– External

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/script

...
<script>
alert('Hello');
</script>
...

...
<script src="file.js"></script>
...

5

Inline JavaScript

• Immediately executed when encountered

• Output is substituted to the tag content, and interpreted as HTML code

– Avoid this behavior as much as possible
• Difficult to maintain, slows down parsing and display, …

Applicazioni Web I - Web Applications I - 2019/2020

...
<script>
document.write('<p>Hello</p>');
</script>
...

...
<p>Hello</p>
...

6

JavaScript external resources

• JS code is loaded from one or more external resources (files)

• Loaded with src= attribute in <script> tag

• The JS file is loaded, and immediately executed

– Then, HTML processing continues

Applicazioni Web I - Web Applications I - 2019/2020

<script src="file.js"></script>
<!-- type="text/javascript" is the default: not needed -->

7

Where to insert the <script> tag?

• In the <head> section
– “clean” / “textbook” solution

– Very inefficient: HTML processing is stopped
until the script is loaded and executed

– Quite inconvenient: the script executes when
the document’s DOM doesn’t exist, yet

• Just before the end of the document
– Much more efficient

• But … see later “Performance tips”

Applicazioni Web I - Web Applications I - 2019/2020

<!DOCTYPE html>
<html>
<head>
<title>Loading a script</title>
<script src="script.js"></script>

</head>
<body>
...

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<title>Loading a script</title>

</head>
<body>
...
<script src="script.js"></script>

</body>
</html>

8

Where does the code go?

• Loaded and run in the browser sandbox

• Attached to a global context: the window object

• May access only a limited set of APIs

– JS Standard Library

– Browser objects (BOM)

– Document objects (DOM)

• Multiple <script>s are independent

– They all access the same global scope

– To have structured collaboration, modules are needed

Applicazioni Web I - Web Applications I - 2019/2020

9

General web architecture

Applicazioni Web I - Web Applications I - 2019/2020

i
n
t
e
r
n
e
t

Browser

Screen
Mouse/

Keyboard

Web server
(Apache, nginx,

node, …) HTML file

Image files

Layout
engine

IMG

IMG

HTM

HTM

Application
Server Application

Data
base

Database server
DBMS

SQL

SQL

JavaScript
engine

JSHTM

DOM

Javascript

JS

CSS Style
sheets

CSS

CSS

XML,
JSON

Data

XML,
JSON

10

Events and Event Loop

• Most phases of processing and interaction with a web document will
generate Asynchronous Events (100’s of different types)

• Generated events may be handled by:
– Pre-defined behaviors (by the browser)

– User-defined event handlers (in your JS)

– Or just ignored, if no event handler is defined

• But JavaScript is single-threaded
– Event handling is synchronous and is based on an event loop

– Event handlers are queued on a Message Queue

– The Message Queue is polled when the main thread is idle

Applicazioni Web I - Web Applications I - 2019/2020

11

Execution environment

Applicazioni Web I - Web Applications I - 2019/2020

Allocated
Objects

Running
function calls

Pending
event

handlers

12

Event loop

• During code execution you may

– Call functions → the function call is pushed to the call stack

– Schedule events → the call to the event handler is put in the Message Queue
• Events may be scheduled also by external events (user actions, I/O, network, timers, …)

• At any step, the JS interpreter:

– If the call stack is not empty, pop the top of the stack and executes it

– If the call stack is empty, pick the head of the Message Queue and executes it

• A function call / event handler is never interrupted

– Avoid blocking code!!

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/EventLoop

https://nodejs.org/en/docs/guides/event-loop-timers-
and-nexttick/#what-is-the-event-loop

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#what-is-the-event-loop

13

BROWSER OBJECT MODEL
JS in the browser

Applicazioni Web I - Web Applications I - 2019/2020

14

Browser main objects

• window represents the window that contains the
DOM document

– allows to interact with the browser via the BOM: browser
object model (not standardized)

– global object, contains all JS global variables
• can be omitted when writing JS code in the page

• document

– represents the DOM tree loaded in a window

– accessible via a window property: window.document

Applicazioni Web I - Web Applications I - 2019/2020

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

15

The global scope

• window represents the global scope of the JS program

• Attributes may be added to window

– Explicitly: window.myprogram=“nice” ;

– Implicitly: var myprogram=“nice” ;

– Beware name clashes with other scripts or predefined properties

• window attributes are automatically visible

– window.document and document are equivalent

Applicazioni Web I - Web Applications I - 2019/2020

16

Browser object model

• window properties

– console: browser debug console (visible via developer tools)

– document: the document object

– history: allows access to History API (history of URLs)

– location: allows access to Location API (current URL, protocol, etc.). Read/write
property, i.e. can be set to load a new page

– localStorage and sessionStorage: allows access to the two objects via the
Web Storage API, to store (small) info locally in the browser

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.mozilla.org/en-US/docs/Web/API/Window

https://developer.mozilla.org/en-US/docs/Web/API/Window

17

Frequently seen properties and methods

Applicazioni Web I - Web Applications I - 2019/2020

18

Window object: main methods

• Methods
– alert(), prompt(), confirm():

handle browser-native dialog boxes
Never use them – just for debug

– setInterval(), clearInterval(), setTimeout(),
setImmediate(): allows to execute code via the event loop of the browser

– addEventListener(), removeEventListener(): allows to execute
code when specific events happen to the document

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.mozilla.org/en-US/docs/Web/API/Window

https://developer.mozilla.org/en-US/docs/Web/API/Window

19

Window object: main methods

– open(): allows to open a new browser window

– moveTo(), resizeTo(), minimize(), focus(): allows to
manipulate the browser window

– ...

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.mozilla.org/en-US/docs/Web/API/Window

https://developer.mozilla.org/en-US/docs/Web/API/Window

20

Applicazioni Web I - Web Applications I - 2019/2020

21

DOCUMENT OBJECT MODEL
JS in the browser

Applicazioni Web I - Web Applications I - 2019/2020

22

DOM History

• DOM Level “0”: legacy DOM

– Partly specified in HTML4. Mainly to access interactive elements (forms, links, …)

• DOM Level 1 (1998): W3C recommendation

– DOM Core: a model for easy manipulation of an XML-based document

– Extended with HTML-specific objects and methods that can change portions of
the doc

– Note: DOM is not JavaScript-specific. However, in the browser context, has been
implemented using ECMAScript

Applicazioni Web I - Web Applications I - 2019/2020

23

DOM History

• DOM Level 2 (2000)

– Introduces new interfaces to manage: events, styles (CSS support), possibility to
more easily access elements (e.g., getElementById)

• DOM Level 3 (2004)

– Includes full support for XML 1.0, e.g., Xpath to access elements, and keyboard
event handling

• DOM Level 4 (2015)

– Snapshot of the WHATWG living standard. A number of significant non-backward
compatible changes (e.g., the attributes are not nodes)

Applicazioni Web I - Web Applications I - 2019/2020

24

DOM Living Standard

• Standardized by WHATWG in the
DOM Living Standard Specification

• https://dom.spec.whatwg.org

Applicazioni Web I - Web Applications I - 2019/2020

https://dom.spec.whatwg.org/

25

DOM

• Browser’s internal representation of a web page

• Obtained through parsing HTML

– Example of parsed HTML tree structure

• Browsers expose an API that
you can use to interact with
the DOM

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/dom/

https://flaviocopes.com/dom/

26

Tools

Applicazioni Web I - Web Applications I - 2019/2020

https://software.hixie.ch/utilities/js/live-dom-viewer/ Browser’s Developer Tools

https://software.hixie.ch/utilities/js/live-dom-viewer/

27

Interaction with the DOM

• Via JavaScript it is possible to

– Access the page metadata and headers

– Inspect the page structure

– Edit any node in the page

– Change any node attribute

– Create/delete nodes in the page

– Edit the CSS styling and classes

– Attach or remove event listeners

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/dom/

https://flaviocopes.com/dom/

28

Types of nodes

• Document: the document Node,
the root of the tree

• Element: an HTML tag

• Attr: an attribute of a tag

• Text: the text content of an
Element or Attr Node

• Comment: an HTML comment

• DocumentType: the Doctype
declaration

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/dom/

https://flaviocopes.com/dom/

29

DOM Classes Hierarchy

• Objects in DOM are
instances of a
hierarchy

Applicazioni Web I - Web Applications I - 2019/2020

nodeType=Node.TEXT_NODE nodeType=Node.COMMENT_NODE

nodeType=Node.ELEMENT_NODE

30

Node lists

• The DOM API may manipulate sets/lists of nodes

• The NodeList type is an array-like sequence of Nodes

• May be accessed as a JS Array

– .length property

– .item(i) , equivalent to list[i]

– .entries(), .keys(), .values() iterators

– .forEach() functional iteration primitive

– for…of for classical iteration

Applicazioni Web I - Web Applications I - 2019/2020

31

DOM MANIPULATION
JS in the browser

Applicazioni Web I - Web Applications I - 2019/2020

32

Finding DOM elements

• document.getElementById(value)

– Node with the attribute id=value

• document.getElementsByTagName(value)

– NodeList of all elements with the specified tag name (e.g., ‘div’)

• document.getElementsByClassName(value)

– NodeList of all elements with attribute class=value (e.g., ‘col-8’)

• document.querySelector(css)

– First Node element that matches the CSS selector syntax

• document.querySelectorAll(css)

– NodeList of all elements that match the CSS selector syntax

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/dom/

https://flaviocopes.com/dom/

33

Note

• Node-finding methods also work on any Element node

• In that case, they only search trough descendant elements

– May be used to refine the search

Applicazioni Web I - Web Applications I - 2019/2020

34

Accessing DOM elements

Applicazioni Web I - Web Applications I - 2019/2020

<!DOCTYPE html>
<html>
<head></head>
<body>
<div id="foo"></div>
<div class="bold"></div>
<div class="bold color"></div>
<script>
document.getElementById('foo');
document.querySelector('#foo');
document.querySelectorAll('.bold');
document.querySelectorAll('.color');
document.querySelectorAll('.bold, .color');
</script>
</body>
</html>

35

Familiarizing with the DOM

Applicazioni Web I - Web Applications I - 2019/2020

36

Navigating the tree

• Properties to navigate the tree

Applicazioni Web I - Web Applications I - 2019/2020

Node

Node

Node Node Node Node

parentNode

childNodes[]

NodeNode
nextSiblingpreviousSibling

firstChild lastChild

37

Navigating the tree

• "Elements" do not
include text

Applicazioni Web I - Web Applications I - 2019/2020

Element

Element

Element Text Element Text

parentElement

children[]

TextElement

nextElementSiblingpreviousElementSibling

firstElementChild lastElementChild

38

Tag attributes exposed as properties

• Attributes of the HTML elements become properties of the DOM objects

• Example
– <body id="page">

– DOM object: document.body.id="page"

– <input id="input" type="checkbox" checked />

– DOM object: input.checked // boolean

• Can read attributes, but to modify content of visualized objects, use
setAttribute()

Applicazioni Web I - Web Applications I - 2019/2020

39

Handling tag attributes

• elem.hasAttribute(name)
– check the existence of the attribute

• elem.getAttribute(name)
– check the value

• elem.setAttribute(name, value)
– set the value of the attribute

• elem.removeAttribute(name)
– delete the attribute

• elem.attributes
– collection of all attributes

• elem.matches(css)
– Check whether the element matches the css selector

Applicazioni Web I - Web Applications I - 2019/2020

40

Creating elements

• Use document methods:

– document.createElement(tag) to create an element with a tag

– document.createTextNode(text) to create a text node with the text

• Example: div with class and content

Applicazioni Web I - Web Applications I - 2019/2020

let div = document.createElement('div');
div.className = "alert alert-success";
div.innerText = "Hi there! You've read an important message.";

<div class="alert alert-success">
Hi there! You've read an important message.
</div>

41

Inserting elements in the DOM tree

• If not inserted, they will not appear

document.body.appendChild(div)

Applicazioni Web I - Web Applications I - 2019/2020

...
<body>
<div class="alert alert-success">
Hi there! You've read an important message.
</div>
<body>

42

Inserting children

• parentElem.appendChild(node)

• parentElem.insertBefore(node, nextSibling)

• parentElem.replaceChild(node, oldChild)

• node.append(…nodes or strings)

• node.prepend(…nodes or strings)

• node.before(…nodes or strings)

• node.after(…nodes or strings)

• node.replaceWith(…nodes or strings)

Applicazioni Web I - Web Applications I - 2019/2020

43

Handling tag content

• .innerHTML to get/set element content in textual form

• The browser will parse the content and convert it into DOM Nodes and
Attrs

Applicazioni Web I - Web Applications I - 2019/2020

div.innerHTML // "Hi there! You've read an important message."

<div class="alert alert-success">
Hi there! You've read an important message.
</div>

44

Inserting new content

• elem.innerHTML = “html fragment”

• elem.insertAdjacentHTML(where, HTML)

– where = beforebegin | afterbegin | beforeend | afterend

– HTML = nodes to insert

• elem.insertAdjacentText(where, text)

• elem.insertAdjacentElement(where, elem)

Applicazioni Web I - Web Applications I - 2019/2020

45

Cloning nodes

• elem.cloneNode(true)

– Recursive (deep) copy of the element, including its attributes, sub-elements, …

• elem.cloneNode(false)

– Shallow copy (will not contain the children)

• Useful to “replicate” some part of the document

Applicazioni Web I - Web Applications I - 2019/2020

46

DOM STYLING
JS in the browser

Applicazioni Web I - Web Applications I - 2019/2020

47

Styling elements

• Via values of class attribute defined in CSS

• Change class using the property className
– Replaces the whole string of classes

– Note: className, not class (JS reserved word)

• To add/remove a single class use classList
– elem.classList.add("col-3") add a class

– elem.classList.remove("col-3") remove a class

– elem.classList.toggle("col-3") if the class exists, it removes it, otherwise it
adds it

– elem.classList.contains("col-3") returns true/false checking if the element
contains the class

Applicazioni Web I - Web Applications I - 2019/2020

48

Styling elements

• elem.style contains all CSS properties
– Example: hide element

elem.style.display="none"
(equivalent to CSS declaration display:none)

• getComputedStyle(element[,pseudo])
– element: selects the element of which we want to read the value

– pseudo: a pseudo element, if necessary

• For properties that use more words the camelCase is used
(backgroundColor, zIndex... instead of background-color ...)

Applicazioni Web I - Web Applications I - 2019/2020

49

EVENT HANDLING
JS in the browser

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.mozilla.org/en-US/docs/Web/Events

https://developer.mozilla.org/en-US/docs/Web/Events

50

Event listeners

• JavaScript in the browser uses an event-driven programming model

– Everything is triggered by the firing of an event

• Events are determined by

– The Element generating the event (event source target)

– The type of generated event

• JavaScript supports three ways of defining event handlers

– Inline event handlers

– DOM on-event handlers

– Using addEventListener() (modern way)

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/javascript-events/

https://flaviocopes.com/javascript-events/

51

Inline event handlers

• Rarely used nowadays

• Inline JavaScript code as value of a special attribute

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/javascript-events/

A link

https://flaviocopes.com/javascript-events/

52

DOM on-event handlers

• Assign a callback to a special property

• Only one callback can be assigned

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/javascript-events/

window.onload = () => {
//window loaded

}

https://flaviocopes.com/javascript-events/

53

addEventListener

• Can add as many listeners as desired, even to the same node

• Callback receives as first parameter an Event object

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/javascript-events/

window.addEventListener('load', () => {
//window loaded

})

const link = document.getElementById('my-link')
link.addEventListener('mousedown', event => {
// mouse button pressed
console.log(event.button) //0=left, 2=right

})

https://flaviocopes.com/javascript-events/

54

Event object

• Main properties:

– target, the DOM element that originated the event

– type, the type of event

– stopPropagation() called to stop propagating the event in the DOM

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.mozilla.org/en-US/docs/Web/API/Event/type

https://developer.mozilla.org/en-US/docs/Web/API/Event/type

55

Event Categories

• User Interface events (load, resize, scroll, etc.)

• Focus/blur events

• Mouse events (click, dblclick, mouseover, drag, etc.)

• Keyboard events (keyup, etc.)

• Form events (submit, change, input)

• Mutation events (DOMContentLoaded, etc.)

• HTML5 events (invalid, loadeddata, etc.)

• CSS events (animations etc.)

Applicazioni Web I - Web Applications I - 2019/2020

https://en.wikipedia.org/wiki/DOM_events

https://en.wikipedia.org/wiki/DOM_events

56

Event handling on the DOM tree

• Something occurs (e.g., a mouse click, a button press)
• Capture phase

– The event is passed to all DOM elements on the path from
the Document to the parent of the target element

– No event handlers are fired
• Except if registered with useCapture=true

• Target phase
– The event reaches the target
– Event handlers are triggered

• Bubbling phase
– Trace back the path towards the document root
– Event handlers are triggered on any encountered node
– Allows us to handle an event on any element by its parent

elements
– event.stopPropagation() interrupts the bubbling phase

Applicazioni Web I - Web Applications I - 2019/2020

https://medium.com/prod-io/javascript-
understanding-dom-event-life-cycle-49e1cf62b2ea

https://developer.mozilla.org/en-US/docs/Web/API/Event/stopPropagation
https://medium.com/prod-io/javascript-understanding-dom-event-life-cycle-49e1cf62b2ea

57

Event bubbling

• Events propagate along the DOM tree

• Bubbling: the event propagates from the item that was affected (target)
up to all its parent tree, starting from the nearest one

– Every time it fires the handler of the element, if present

• Useful to create default handlers (on the outer elements)

Applicazioni Web I - Web Applications I - 2019/2020

<div id="container"> // 2nd
<button>Click me</button> // 1st

</div>

58

Preventing default behavior

• Many events cause a default behavior

– Click on link: go to URL

– Click on submit button: form is sent

• Can be prevented by

event.preventDefault()

Applicazioni Web I - Web Applications I - 2019/2020

59

Stopping event propagation

• Can be done with event.stopPropagation()

– Typically in the event handler

Applicazioni Web I - Web Applications I - 2019/2020

const link = document.getElementById('my-link')
link.addEventListener('mousedown', event => {
// process the event
// ...

event.stopPropagation()
})

60

HTML Page lifecycle: Events

• DOMContentLoaded (defined on document)

– The browser loaded all HTML and the DOM tree is ready

– External resources are not loaded, yet

• load (defined on window)

– The browser finished loading all external resources

• beforeunload/unload

– The user is about to leave the page / has just left the page

– Not recommended (non totally reliable)

Applicazioni Web I - Web Applications I - 2019/2020

document.addEventListener("DOMContentLoaded", ready);

61

More Lifecycle events

Applicazioni Web I - Web Applications I - 2019/2020

https://developers.google.com/web/updates
/2018/07/page-lifecycle-api

https://developers.google.com/web/updates/2018/07/page-lifecycle-api

62

Throttling

• Some events fire continuously (mousemove, scroll, etc.) providing
coordinates, so that user behavior can be tracked

• Complex operations in the event handler result in sluggish user
experience

• Use external libraries or set timers to process them only periodically

Applicazioni Web I - Web Applications I - 2019/2020

let cached = null ;
window.addEventListener('scroll', event => {
if (!cached) {
setTimeout(() => {
// process event -- you can access the original event at `cached`
cached = null ;

}, 100) }
cached = event ;

}) ; https://flaviocopes.com/javascript-events/

https://flaviocopes.com/javascript-events/

63

PERFORMANCE TIPS
JS in the browser

Applicazioni Web I - Web Applications I - 2019/2020

64

Performance comparison in Loading JS

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/javascript-async-defer/

https://flaviocopes.com/javascript-async-defer/

65

New loading attributes

• <script async src="script.js"></script>

– Script will be fetched in parallel to parsing and evaluated as soon as it is available

– Not immediately executed, not blocking

• <script defer src="script.js"></script> (preferred)

– Indicate to a browser that the script is meant to be executed after the document
has been parsed, but before firing DOMContentLoaded (that will wait until the
script is finished)

– Guaranteed to execute in the order they are loaded

• Both should be placed in the <head> of the document

Applicazioni Web I - Web Applications I - 2019/2020

66

Defer vs async behavior

Applicazioni Web I - Web Applications I - 2019/2020

https://flaviocopes.com/javascript-async-defer/

https://flaviocopes.com/javascript-async-defer/

68

References

• Web Engineering SS20 - TU Wien, prof. Jürgen Cito, https://web-
engineering-tuwien.github.io/

• Async and defer

– Efficiently load JavaScript with defer and async, Flavio Copes,
https://flaviocopes.com/javascript-async-defer/

– https://hacks.mozilla.org/2017/09/building-the-dom-faster-speculative-parsing-
async-defer-and-preload/

Applicazioni Web I - Web Applications I - 2019/2020

https://web-engineering-tuwien.github.io/
https://flaviocopes.com/javascript-async-defer/
https://hacks.mozilla.org/2017/09/building-the-dom-faster-speculative-parsing-async-defer-and-preload/

69

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

