2020 Theae ane all acnipta.

JS in the browser

Handling web document structure

TMWMLQW.

Enrico Masala
Fulvio Corno

These are all scripts.

Some slides adapted from Giovanni Malnati

@5, POLITECNICO
G.7/% DITORINO

pasta Applicazioni Web | - Web Applications | - 2019/2020 ‘@@@@\
%}?‘r o

Goal

* Loading JavaScript in the browser

* Browser object model
 Document object model
e DOM Manipulation

e DOM Styling

 Event Handling

* Performance tips

Appl

icazioni Web | - Web Applications | - 2019/2020

Mozilla Deleloper Network: The Script element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

JSin the browser

LOADING JS IN THE BROWSER

Applicazioni Web | - Web Applications | - 2019/2020 H

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

Loading Javascript in the browser

e JS must be loaded from an HTML document

* <script>tag

— Inline
<script>
alert('Hello');
</script>

— External
<script src="file.js"></script>

. https://developer.mozilla.org/en-
- US/docs/Web/HTML/Element/script

Applicazioni Web | - Web Applications | - 2019/2020

Inline JavaScript

 Immediately executed when encountered

* QOutput is substituted to the tag content, and interpreted as HTML code
— Avoid this behavior as much as possible

 Difficult to maintain, slows down parsing and display, ...

<script> ce
document.write('<p>Hello</p>"'); <p>Hello</p>
</script>

Applicazioni Web | - Web Applications | - 2019/2020

JavaScript external resources

e JS code is loaded from one or more external resources (files)
* Loaded with src= attribute in <script> tag

 The JSfile is loaded, and immediately executed
— Then, HTML processing continues

<script src="file.js"></script>
<!-- type="text/javascript" is the default: not needed -->

Applicazioni Web | - Web Applications | - 2019/2020

Where to insert the <script> tag?

* Inthe <head> section e
— “clean” / “textbook” solution /Zhﬁialﬁii‘;i‘ii-&gc?fﬁf.i e
— Very inefficient: HTML processing is stopped <body>
until the script is loaded and executed G
— Quite inconvenient: the script executes when
the document’s DOM doesn’t exist, yet
* Just before the end of the document <1DOCTYPE html>
<html>
— Much more efficient N etitlesLoading a script</titles
g
. ;ééri t src="script.js"></script>
e But ... see later “Performance tips” </body> o p

</html>

Applicazioni Web | - Web Applications | - 2019/2020

Where does the code go?

e Loaded and run in the browser sandbox
e Attached to a global context: the window object

window

* May access only a limited set of APIs N N
— JS Standard Library document | | navigator giceh
— Browser objects (BOM) —
— Document objects (DOM)

location Function

frames

* Multiple <script>s are independent nistory
XMLHttpRequest

— They all access the same global scope
— To have structured collaboration, modules are needed

Applicazioni Web | - Web Applications | - 2019/2020

General web architecture

Web server @

Apache, nginx,
(Ap = HTML file

Mouse/

SCreen Keyboard

Application R
Server pplication

’
7’ , '
4 /7 1
’ ’ 1
e / !
’ ‘ 1
’
’ ’ l’
N 4 ’
rowser / '
/ ’ 1
.
e ’ 1
’ ’
, 1
> ’ / 1
- - . 4 1
’ ’
’ / 1
/ , | ‘@

Database server
DBMS

: ' Image files i Javascript

CSS Style
sheets

Applicazioni Web | - Web Applications | - 2019/2020 H

Events and Event Loop

* Most phases of processing and interaction with a web document will
generate Asynchronous Events (100’s of different types)

* Generated events may be handled by:
— Pre-defined behaviors (by the browser)
— User-defined event handlers (in your JS)
— Or just ignored, if no event handler is defined
e But JavaScript is single-threaded
— Event handling is synchronous and is based on an event loop

— Event handlers are queued on a Message Queue
— The Message Queue is polled when the main thread is idle

Applicazioni Web | - Web Applications | - 2019/2020

Execution environment

Allocated
Objects

Running
function calls

Memory Heap

Web APIs

DOM (document)

J S q AJAX (XMLHttpRequest)

Timeout (setTimeout)

Call Stack

Event Loop Callback Queue /
‘ ’ 4¢— onClick onLoad onDone

Applicazioni Web | - Web Applications | - 2019/2020

Pending
event
handlers

Event loop

* During code execution you may
— Call functions = the function call is pushed to the call stack
— Schedule events = the call to the event handler is put in the Message Queue
* Events may be scheduled also by external events (user actions, I/0, network, timers, ...)
e At any step, the JS interpreter:
— If the call stack is not empty, pop the top of the stack and executes it
— If the call stack is empty, pick the head of the Message Queue and executes it

* A function call / event handler is never interrupted

https://nodejs.org/en/docs/guides/event-loop-timers-

— Avoid blocking code!! and-nexttick/#what-is-the-event-loop

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/EventLoop

Applicazioni Web | - Web Applications | - 2019/2020 H

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#what-is-the-event-loop

JSin the browser

BROWSER OBJECT MODEL

Browser main objects

 window represents the window that contains the
DOM document

— allows to interact with the browser via the BOM: browser
object model (not standardized)

— global object, contains all JS global variables

e can be omitted when writing JS code in the page

e document
— represents the DOM tree loaded in a window
— accessible via a window property: window.document

window

/ * \JavaSc-*int

document

navigator
sCreen
location
frames

history

AMLHttpRequest

Object

Array

Function

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

Applicazioni Web | - Web Applications | - 2019/2020

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

The global scope

 window represents the global scope of the JS program
e Attributes may be added to window

— Explicitly: window.myprogram=“nice” ;

— Implicitly: var myprogram=“nice” ;

— Beware name clashes with other scripts or predefined properties
 window attributes are automatically visible

— window.document and document are equivalent

Applicazioni Web | - Web Applications | - 2019/2020

Browser object model

e window properties
— console: browser debug console (visible via developer tools)
— document: the document object
— history: allows access to History API (history of URLs)

— location: allows access to Location API (current URL, protocol, etc.). Read/write
property, i.e. can be set to load a new page

— localStorage and sessionStorage: allows access to the two objects via the
Web Storage API, to store (small) info locally in the browser

https://developer.mozilla.org/en-US/docs/Web/API/Window

Applicazioni Web | - Web Applications | - 2019/2020 H

https://developer.mozilla.org/en-US/docs/Web/API/Window

Frequently seen properties and methods

Object

Property and Methods

window
screen
location
history
navigator
document
Popup Boxes

Timing

Other global objects, open(), close(), moveTo(), resizeTo()
width, height, colorDepth, pixelDepth, ...

hostname, pathname, port, protocol, assign(), ...

back(), forward()

userAgent, platform, systemlLanguage, ..

body, forms, write(), close(), getElementByld(), ...

alert(), confirm(), prompt()

setinterval(func,time,p1,...), setTimeout(func,time)

Applicazioni Web | - Web Applications | - 2019/2020

Window object: main methods

e Methods

— alert (), prompt(),confirm():
handle browser-native dialog boxes
Never use them — just for debug

— setInterval (),clearInterval (), setTimeout (),
setImmediate (): allows to execute code via the event loop of the browser

— addEventListener (), removeEventListener (): allows to execute

code when specific events happen to the document
https://developer.mozilla.org/en-US/docs/Web/APl/Window

Applicazioni Web | - Web Applications | - 2019/2020 H

https://developer.mozilla.org/en-US/docs/Web/API/Window

Window object: main methods

— open () : allows to open a new browser window

— moveTo (), resizeTo(), minimize (), focus():allowsto
manipulate the browser window

https://developer.mozilla.org/en-US/docs/Web/API/Window

Applicazioni Web | - Web Applications | - 2019/2020 H

https://developer.mozilla.org/en-US/docs/Web/API/Window

Storing Data

Cookies

String/value pairs, Semicolon separated
Cookies are transferred on to every request

Web Storage (Local and Session Storage)

Store data as key/value pairs on user side
Browser defines storage quota

Local Storage (window.localStorage)

Store data in users browser

Comparison to Cookies: more secure,
larger data capacity, not transferred

No expiration date

Session Storage (window.sessionStorage)

Store data in session
Data is destroyed when tab/browser is closed

Informatics

document.cookie = "name=Jane Doe; nr=1234567;
expires="+date.toGMTString()

let storage = permanent ? window.localStorage :
window.sessionStorage;
if(!storage["name"]) {
storage["name”] = "A simple storage”
}

alert("Your name is " + storage["name"]);

JSin the browser

DOCUMENT OBJECT MODEL

DOM History

e DOM Level “0”: legacy DOM
— Partly specified in HTML4. Mainly to access interactive elements (forms, links, ...)

e DOM Level 1(1998): W3C recommendation

— DOM Core: a model for easy manipulation of an XML-based document

— Extended with HTML-specific objects and methods that can change portions of
the doc

— Note: DOM is not JavaScript-specific. However, in the browser context, has been
implemented using ECMAScript

Applicazioni Web | - Web Applications | - 2019/2020

DOM History

DOM Level 2 (2000)

— Introduces new interfaces to manage: events, styles (CSS support), possibility to
more easily access elements (e.g., getElementByld)

DOM Level 3 (2004)

— Includes full support for XML 1.0, e.g., Xpath to access elements, and keyboard
event handling

DOM Level 4 (2015)

— Snapshot of the WHATWG living standard. A number of significant non-backward
compatible changes (e.g., the attributes are not nodes)

Applicazioni Web | - Web Applications | - 2019/2020

DOM Living Standard 5OM

Living Standard — Last Updated 14 March 2020

* Standardized by WHATWG in the e o)

Commits:

DOM Living Standard Specification

Snapshot as of this commit
@thedomstandard

* https://dom.spec.whatwg.org

web-platform-tests dom/ (ongoing work)

Translations (non-normative):

SENS

Abstract

DOM defines a platform-neutral model for events, aborting activities, and node trees.

Table of Contents

Goals
1 Infrastructure
1.1 Trees
1.2 Ordered sets
1.3 Selectors
1.4 Namespaces
2 Events

Applicazioni Web | - Web Applications | - 2019/2020

https://dom.spec.whatwg.org/

DOM

 Browser’s internal representation of a web page

* Obtained through parsing HTML
pod

— Example of parsed HTML tree structure]
| tille |

"do the exercise
armyway ™

[Trickier nesting. still"]

* Browsers expose an API that =
you can use to interact with s o O
the DOM

“lake your e

https://flaviocopes.com/dom/ a

Applicazioni Web | - Web Applications | - 2019/2020

https://flaviocopes.com/dom/

Tools

Live DOM Viewer

<body>

<header>
<hl>My exams</hl>
</neader>
<main>
<takble class="table">
<thead>
<tr>
<th>Exam</th>
<th>Score</th>
<th>Date</th>
</t
</thead>

DOM view (hide, refresh):

DOCTYPE: html
HTML lang="=n"
HEAD
#text:
TITLE
Latext: Exams
—#text:
#text:
BODY
[#text:
—HEADER
F#text:
—H1
L ptext: My exams
—#text:
#text:
FMATH
F#text:
TABLE class="tabls"
#text:

https://softT{ﬁNare.hixie.ch/utiIities/is/live—dom—viewer/

My exams

Current exams and scores

Exam Score Date
Web Applications] 30 2020-03-24
Computer Architectures 30 2020-03-24

Data Science and Database Technology 30 2020-03-24
Computer network technologies and services 30 2020-03-24

G‘ O Analisi pagina Conscle [Debugger Tlv Rete [} Editor stili m Prestazicni 3D§ Iem

O, Cerca in HTML
<IDOCTYPE himl>
<html lanz="en"» |scorrimemto
» <head> (= </head
>
w <headers
<hIxMy examse</hl»
</header>
w <main»
w <table class="table™»
w <thead»

- <tre
<thrExam</th>
<th»score</ths
<th»pate</th»

<ftrs

</thead»

w ¢tbody>

w <t

<td>Web Applications I</td>
<tde 38/ tde
<td»2228-83-24</td>
<ftre
w <tr>
<td»Computer Architectures</tds

Browser’s Developer Tools

Applicazioni Web | - Web Applications | - 2019/2020

https://software.hixie.ch/utilities/js/live-dom-viewer/

Interaction with the DOM

* Via JavaScript it is possible to
— Access the page metadata and headers
— Inspect the page structure
— Edit any node in the page
— Change any node attribute
— Create/delete nodes in the page
— Edit the CSS styling and classes

— Attach or remove event listeners

https://flaviocopes.com/dom/

Applicazioni Web | - Web Applications | - 2019/2020 H

https://flaviocopes.com/dom/

Types of nodes

* Document: the document Node,
the root of the tree

* Element: an HTML tag
e Attr: an attribute of a tag

e Text: the text content of an
Element or Attr Node

e Comment: an HTML comment

* DocumentType: the Doctype
declaration

Document

.

<html>
root element

{_’ <body=>
element

L <3>
element
"Link to something"

—> text node

"href"
—> attribute

{_’ "http://google.com"
attribute value

https://flaviocopes.com/dom/

Applicazioni Web | - Web Applications | - 2019/2020

https://flaviocopes.com/dom/

DOM Classes Hierarchy

]] EventTarget
* Objects in DOM are 1
instances of a
Node

hierarch 4 LN
\/ nodeType=Node.TEXT_NODE t nodeType=Node.COMMENT_NODE

Text nodeType=Node.ELEMENT_NODE r amment
Element
<div> <fdiv>
<divsTexte/d }ﬁikxh
1 SVGElement
HTMLElement
HTMLInputElement HTMLBodyElement HTMLAnchorElement

Applicazioni Web | - Web Applications | - 2019/2020

Node lists

* The DOM API may manipulate sets/lists of nodes
 The Nodelist type is an array-like sequence of Nodes

 May be accessed as a JS Array
— .length property
— .item(i) , equivalent to list[i]
— .entries(), .keys(), .values() iterators
— .forEach() functional iteration primitive
— for...of for classical iteration

Applicazioni Web | - Web Applications | - 2019/2020

JSin the browser

DOM MANIPULATION

Applicazioni Web | - Web Applications | - 2019/2020

Finding DOM elements

document.getElementById(value)
— Node with the attribute id=value
 document.getElementsByTagName(value)

— Nodelist of all elements with the specified tag name (e.g., ‘div’)
 document.getElementsByClassName(value)

— Nodelist of all elements with attribute class=value (e.g., ‘col-8’)
 document.querySelector(css)

— First Node element that matches the CSS selector syntax
 document.querySelectorAll(css)

— Nodelist of all elements that match the CSS selector syntax
https://flaviocopes.com/dom/

Applicazioni Web | - Web Applications | - 2019/2020

https://flaviocopes.com/dom/

Note

* Node-finding methods also work on any Element node

* |n that case, they only search trough descendant elements
— May be used to refine the search

Applicazioni Web | - Web Applications | - 2019/2020

Accessing DOM elements

<!DOCTYPE html>

<html>

<head></head>

<body>

<div id="foo0"></div>

<div class="bold"></div>

<div class="bold color"></div>
<script>
document.getElementById('foo');
document.querySelector('#fo0');
document.querySelectorAll('.bold");
document.querySelectorAll('.color');
document.querySelectorAll('.bold, .color');
</script>

</body>

</html>

div id="foo"></div

div id="foo"></div
» NodelList(2) [div.bold, div.bold.color]
» NodeList [div.bold.color]
» NodelList(2) [div.bold, div.bold.color]

Applicazioni Web | - Web Applications | - 2019/2020

Familiarizing with the DOM

Console 1) Rete m Prestazioni

{} Editor stili

O O Analisi pagina
Q, Cercain HTML

<IDOCTYPE hitml>

<html lang="en"s

> Debugger

B <head> (=) </head>
w <body>
b cheaders (= </headers
w <main>
w «table class="table">

¥ <theads (= </thead»
b <thodys (= < /thody>
<caption»Current exams and scores</captions
«/tablex
</main>
b <footers (= </Tooters

html » body » main > tabletable

U]
)

5 Filtra me

Non & stata dichiarata la codifica caratteri del documento HTML. I1 documento
codifica caratteri di una pagina deve essere dichiarata nel documento nel protocollo di

» let tab = document.getElementsByTaghame('table"}
& undsfined
» tab
& p HTMLCollection { @: table.table {:-, length: 1 %
»» tab[e]
& - table.table {3
accessKey:
accesskeylabel:
align:
assignedslot: null
p attributes: Namedwodemap [class="table"]
baseURI: "fils fownCloudyse
bgcolor:
border:
»

Applicazioni Web | - Web Applications

verra visualizzate con del

E Memoria @ Adblock Plus

+ &

"

E Archiviazione 'i' Accessibilita

testo incomprensibile in alcune configurazioni del

trasferimento.

exams-plain. html

I-2019/2020

Navigating the tree

* Properties to navigate the tree N(ide

|
|
: parentNode

Node <------- Node -—-—----- > Node

""""""" previousSibling nextSibling

firstChild __-" ' “~__ lastChild
-7 khildNodE§[]‘ ----- R
(v I "2 A
Node Node Node - Node

__

Applicazioni Web | - Web Applications | - 2019/2020

Navigating the tree

e "Elements" do not
include text

nextElementSibling

« lastElementChild

,’ A children]] ™.
g P

Applicazioni Web | - Web Applications | - 2019/2020

Tag attributes exposed as properties

e Attributes of the HTML elements become properties of the DOM objects

e Example
— <body id="page">
— DOM object: document.body.id="page"

— <input id="input" type="checkbox" checked />
— DOM object: input.checked // boolean

* (Can read attributes, but to modify content of visualized objects, use
setAttribute()

Applicazioni Web | - Web Applications | - 2019/2020 %

Handling tag attributes

 elem.hasAttribute(name)
— check the existence of the attribute

« elem.getAttribute(name)

— check the value

 elem.setAttribute(name, value)
— set the value of the attribute

 elem.removeAttribute(name)
— delete the attribute

e elem.attributes
— collection of all attributes

« elem.matches(css)
— Check whether the element matches the css selector

Applicazioni Web | - Web Applications | - 2019/2020

Creating elements

* Use document methods:
— document.createElement(tag) to create an element with a tag
— document.createTextNode(text) to create atext node with the text

 Example: div with class and content

let div = document.createElement('div"');
div.className = "alert alert-success”;
div.innerText = "Hi there! You've read an important message.";

<div class="alert alert-success">
Hi there! You've read an important message.
</div>

Applicazioni Web | - Web Applications | - 2019/2020

Inserting elements in the DOM tree

* If not inserted, they will not appear
document.body.appendChild(div)

<body>

<div class="alert alert-success">

Hi therel You've read an important message.
</div>

<body>

Applicazioni Web | - Web Applications | - 2019/2020

Inserting children

* NOC
* NOC
* NOC
* NOC

* NOC

™ M (M (M (D

narentElem.appendChild(node)
parentElem.insertBefore(node, nextSibling)
parentElem.replaceChild(node, oldChild)

.append(..nodes or strings)
.prepend(..nodes or strings)
.before(..nodes or strings)
.after(..nodes or strings)
.replacelWith(..nodes or strings)

Applicazioni Web | - Web Applications | - 2019/2020

ol.before

e

ol.prepend

<ol
:li.ﬁ f1i>

<1i>1</1i>
<1i»2¢/1i>

—

ol.*{..nodes or strings)

__.--/

* ﬂ]. >

—

ol.append

ol.atter

Handling tag content

 .innerHTML to get/set element content in textual form

* The browser will parse the content and convert it into DOM Nodes and
Attrs

<div class="alert alert-success">
Hi therel You've read an important message.
</div>

div.innerHTML // "Hi therel You've read an important message."

Applicazioni Web | - Web Applications | - 2019/2020 H

betorebegin

Inserting new content)

01>

cli,«'§< f1i> “‘“‘*\

<1i>1</1i> ol.insertAdjacentHTML(*, html)

e elem.innerHTML = “html fragment” A2/ __~
 beforeend
« elem.insertAdjacentHTML (where, HTML)

— where = beforebegin | afterbegin | beforeend | afterend
— HTML = nodes to insert

« elem.insertAdjacentText(where, text)
« elem.insertAdjacentElement(where, elem)

Applicazioni Web | - Web Applications | - 2019/2020 %

Cloning nodes

 elem.cloneNode(true)
— Recursive (deep) copy of the element, including its attributes, sub-elements, ...

« elem.cloneNode(false)
— Shallow copy (will not contain the children)

e Useful to “replicate” some part of the document

Applicazioni Web | - Web Applications | - 2019/2020

JSin the browser

DOM STYLING

Applicazioni Web | - Web Applications | - 2019/2020

Styling elements

* Via values of class attribute defined in CSS

 Change class using the property className
— Replaces the whole string of classes
— Note: className, not class (JS reserved word)

* To add/remove a single class use classlList
— elem.classlList.add("col-3") add aclass

— elem.classlList.remove("col-3") remove aclass

— elem.classlList.toggle("col-3") if the class exists, it removes it, otherwise it
adds it

— elem.classlList.contains("col-3") returnstrue/false checking if the element

contains the class
Applicazioni Web | - Web Applications | - 2019/2020 a

Styling elements

* elem.style contains all CSS properties
— Example: hide element

elem.style.display="none"
(equivalent to CSS declaration display:none)

 getComputedStyle(element[,pseudo])
— element: selects the element of which we want to read the value
— pseudo: a pseudo element, if necessary

* For properties that use more words the camelCase is used

(backgroundColor, zIndex... instead of background-color ...

Applicazioni Web | - Web Applications | - 2019/2020

https://developer.mozilla.org/en-US/docs/Web/Events

JSin the browser

EVENT HANDLING

Applicazioni Web | - Web Applications | - 2019/2020

https://developer.mozilla.org/en-US/docs/Web/Events

Event listeners

e JavaScript in the browser uses an event-driven programming model
— Everything is triggered by the firing of an event

e Events are determined by
— The Element generating the event (event seuree target)
— The type of generated event
e JavaScript supports three ways of defining event handlers
— Inline event handlers
— DOM on-event handlers
— Using addEventListener() (modernway) hitps://flaviocopes.com/javascript-events/

Applicazioni Web | - Web Applications | - 2019/2020 %

https://flaviocopes.com/javascript-events/

Inline event handlers

e Rarely used nowadays
* Inline JavaScript code as value of a special attribute

A link

https://flaviocopes.com/javascript-events/

Applicazioni Web | - Web Applications | - 2019/2020 %

https://flaviocopes.com/javascript-events/

DOM on-event handlers

* Assign a callback to a special property
* Only one callback can be assigned

window.onload = () => {
//window loaded

}

https://flaviocopes.com/javascript-events/

Applicazioni Web | - Web Applications | - 2019/2020 %

https://flaviocopes.com/javascript-events/

addEventListener

 Can add as many listeners as desired, even to the same node
* Callback receives as first parameter an Event object

window.addEventListener('load', () => {
//window loaded

})

const link = document.getElementById('my-1link")
link.addEventListener('mousedown', event => {
// mouse button pressed

console.log(event.button) //0=1left, 2=right
})

https://flaviocopes.com/javascript-events/

Applicazioni Web | - Web Applications | - 2019/2020 %

https://flaviocopes.com/javascript-events/

Event object

* Main properties:
— target, the DOM element that originated the event
— type, the type of event
— stopPropagation() called to stop propagating the event in the DOM

https://developer.mozilla.org/en-US/docs/Web/API/Event/type

Applicazioni Web | - Web Applications | - 2019/2020 %

https://developer.mozilla.org/en-US/docs/Web/API/Event/type

Event Categories

* User Interface events (load, resize, scroll, etc.)
* Focus/blur events

* Mouse events (click, dblclick, mouseover, drag,
 Keyboard events (keyup, etc.)

* Form events (submit, change, input)
 Mutation events (DOMContentLoaded, etc.)

e HTML5 events (invalid, loadeddata, etc.)

e CSS events (animations etc.)

Applicazioni Web | - Web Applications | - 2019/2020

Category Type
click

dolclick
mousedown
mouseup
mouseover
mousemovel®!

Mouse mouseout

dragstart
drag
dragenter

dragieave
dragover
diop

dragend

keydown
Keyboard | keypress

keyup

load

HTML unload
frame/object

error

resize
scroll

select
change
submit

HTMLform |~ oo

focus

biur

focusin

User focusout

interface
DOMActivate
DOMSubtreeModified
DOMModelnserted
DOMModeRemoved

Mutation DOMModeRemovedFromDocument
DOMNodelnsertedintoDocument
DDOMAttModified
DOMCharacterDataModified
loadstart
progress
error

Progress ot

load

loadend

Attribute Description

Fires when the pointing device button s clicked over an element. A click is
defined as a the same The
sequence of these events is:

onclick = mousedown
= mouseup
= click

ondbicick Fires when the pointing device button is double-clicked over an element
Fires when the pointing is an element

onmouseup | Fires when the pointing device button is released over an element
Fires when the pointing i
Fires when the pointing i while it is over an element

onmouseout | Fires when the pointing device is moved away from an element

ondragstart | Fired on an element when a drag is Started.

ondia This event is fired at the source of the drag, that is, the element where

9 dragstart was fired, during the drag cperation.

ondragenter | Fired when the mouse is first moved over an element while a drag is occurring.

ondiagieave | TS eventis ited when the mous leaves an element while a drag is
accuriing
This event is fired as the mouse is moved over an element when a drag is

OndIGOVer | pocurting.

ondro The drop event s fired on the element where the drop occurs at the end of the

P drag operation.

The source of the drag will receive a dragand event when the drag operation is

ondragend i
complete, whether it was successful of not

onkeydown | Fires before keypress, when a key on the keyboard is pressed.

onkeypress | Fires after keydown, when a key on the keyboard is pressed.

onkeyup Fires when a key on the keyboard s released
Fires when the user agent finishes loading all content within a document,
including window, rames, objects and images

onload For elements, it fires when the target element and all of its
content has finished loading
Fires when the user agent removes all content from a window or frame

onunload For elements, it fires when the target element or any of its content
has been removed

onabort Fires when an objectimage is stopped from loading before completely loaded

oneror Fires when an objectimage/irame cannot be loaded properly

onresize Fires when a document view is resized

onscroll Fires when an element or document view is scrolled

onselect Fires when a user selects some lext in a lext field, including input and textarea

onchange Fires when a control loses the input focus and ts value has been modified
since gaining focus

onsubmit Fires when a form is submitted

onreset Fires when a form is reset

onfocus Fires when an element receives focus either via the pointing device or by tab
navigation

onblur Fires when an element loses focus either via the pointing device or by tabbing
navigation

(none) Similar to HTML focus event, but can be applied fo any focusable element

(none) ‘Similar to HTML biur event, but can be applied to any focusable element
Similar to XUL command event. Fires when an element is activated, for

(none) 3
instance, through amouse dlick or a keypress.

(none) Fires when the subtree is modified

(none) Fires when a node has been added as a child of another node

(none) Fires when a node has been removed from a DOM-ree

(none) Fires when a node is being removed from a document

(none) Fires when a node is being inserled into a document

(none) Fires when an aftribute has been modified

(none) Fires when the character data has been modified

(none) Progress has begun

(none) In progress. After loadstart has been dispatched

(none) Progression failed. After the last progress has been dispaiched, or after
loadstart has been dispatched if progress has not been dispatched.

(none) Progression is terminated. After the last progress has been dispatched, or after
loadstart has been dispalched if progress has not been dispatched.

tnone) Progression is successful. After the last progress has been dispaiched, o after
loadstart has been dispatched if progress has not been dispatched.

(none) Progress has stopped. After one of error, abort, of load has been dispatched

Bubbles

Yes

Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes
Yes

Yes

Yes

No, except that a scroll event
on document must bubble to
the window!”!

Yes
Yes

Yes

Yes

No

No

Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
No
No

No
No

No

No

https://en.wikipedia.org/wiki/DOM e

Cancelable

No

No

No
No
No

No

No

No

No

No

No

No
No

No
No
No
No
No
No
No
No
No

No

No

No

No

https://en.wikipedia.org/wiki/DOM_events

Event handling on the DOM tree

Something occurs (e.g., a mouse click, a button press)

Capture phase

— The event is passed to all DOM elements on the path from
the Document to the parent of the target element

— No event handlers are fired
* Except if registered with useCapture=true
Target phase
— The event reaches the target
— Event handlers are triggered

Bubbling phase
— Trace back the path towards the document root
— Event handlers are triggered on any encountered node

— Allows us to handle an event on any element by its parent
elements

— event.stopPropagation() interrupts the bubbling phase

Applicazioni Web | - Web Applications | - 2019/2020

Window

o '
> s
(r Document ‘\
‘o v P,
= | <html> | =
(=
Capture \‘)
Phase = | <body> -
(1) 1\\
v)
e <table> ; Bubbling
\ + N Phase
‘b J (3)
= | <tbody> | & _
(D,
\ ~~
- N D
_________ > /
<tr> (<tr>
<td> <td> Target d
Phase
(2)

Shady Grove

https://medium.com/prod-io/javascript-

understanding-dom-event-life-cycle-49e1l

pA=Y

https://developer.mozilla.org/en-US/docs/Web/API/Event/stopPropagation
https://medium.com/prod-io/javascript-understanding-dom-event-life-cycle-49e1cf62b2ea

Event bubbling

* Events propagate along the DOM tree

* Bubbling: the event propagates from the item that was affected (target)
up to all its parent tree, starting from the nearest one

— Every time it fires the handler of the element, if present

e Useful to create default handlers (on the outer elements)

<div id="container"> // 2nd
<button>Click me</button> // 1st
</div>

Applicazioni Web | - Web Applications | - 2019/2020

Preventing default behavior

 Many events cause a default behavior
— Click on link: go to URL
— Click on submit button: form is sent

* Can be prevented by
event.preventDefault()

Applicazioni Web | - Web Applications | - 2019/2020

Stopping event propagation

e Can be done with event.stopPropagation()
— Typically in the event handler

const link = document.getElementById('my-link")
link.addEventListener('mousedown', event => {
// process the event

I oo

event.stopPropagation()

1)

Applicazioni Web | - Web Applications | - 2019/2020

HTML Page lifecycle: Events

e DOMContentLoaded (defined on document)
— The browser loaded all HTML and the DOM tree is ready
— External resources are not loaded, yet

 load (defined on window)
— The browser finished loading all external resources

 beforeunload/unload
— The user is about to leave the page / has just left the page
— Not recommended (non totally reliable)

document.addEventListener("DOMContentLoaded", ready);

Applicazioni Web | - Web Applications | - 2019/2020

https://developers.google.com/web/updates
/2018/07/page-lifecycle-api

More Lifecvcle events

e

|focus| | blur |

Next state depends on
document . hasFocus() and @
document.visibilityState

{ PASSIVE }
| visibilitychange | | visibilitychange | Next state depends on the pagehide
event.persisted property (whether
@ the browser can cache the page) @

[J@@
Bro‘w ser starts pageshow HIDDEN beforeunload H pagehide ‘ unload TERMINATED]
@ loading the page

& ® ®
[

| resume”*

| freeze™ |

Do

[FROZEN] L DISCARDED]

After the next load,
document.wasDiscarded * @
will be set to true

User navigates to the new page System freezes the page to conserve CPU

(user-initiated) User focuses a page in another tab, window, or app

STATE
System resumes the frozen page

J State change (same page load)

State change (across page loads)

User re-focuses the page User switches tabs back to the frozen page

User switches tabs away from the page System discards the page to conserve memory

(browser-initiated) User navigates back/forward to the cached page

M

STATE J

Indicates multiple
next-state possibilities

* Indicates new APl in the
Page Lifecycle spec.

User navigates to another page User switches tabs back to the discarded page

©e0o®OO

User closes the tab, window, or app User navigates back to a terminated page

@
®
©
@
@ User switches tabs back to the page
®
®
®

System puts page into the page cache

pp“ tazioni Wah | - \Wah Annlicatiane | - 2019/2020
\ CSHOHH - AP PHEGHORST+—— 035/ 9=

https://developers.google.com/web/updates/2018/07/page-lifecycle-api

Throttling

* Some events fire continuously (mousemove, scroll, etc.) providing
coordinates, so that user behavior can be tracked

e Complex operations in the event handler result in sluggish user
experience

* Use external libraries or set timers to process them only periodically

let cached = null ;
window.addEventListener('scroll', event => {
if (!cached) {
setTimeout(() => {
// process event -- you can access the original event at "cached”
cached = null ;

}, 100) }

cached = event ;
}) https://flaviocopes.com/javascript-events/ Q

Applicazioni Web | - Web Applications | - 2019/2020

https://flaviocopes.com/javascript-events/

JSin the browser

PERFORMANCE TIPS

Applicazioni Web | - Web Applications | - 2019/2020

Performance comparison in Loading JS

Without defer or async, script in "head’
ready

ANERERNNNREEERERER ARRRRENERERERRRRREERERRRNEEEEERNERERRRRRRRENERRNANENRRREY
start parsing HTML BRRRRRRNRRRRRRNNRRRresume parsing HTMLENEENEERRRERRRRRRREN
AEEEEEEENERERRRRRNNNRRNNN NN NNRNEED

Pexecute scriptii

Without defer or async, script in " body’

ready

AN NN NN NN NN NN NN NN NSNS SSEEEEEENEAEANNNNNN |AEEEEEEEEEEEES AEEEEENEEEEEEEEER
AR EENNNNNEENNNNNNNENEREEparse HTMLENEERENNNNNNENENNNNNNENNNNNNNNDDNN|@fetch scriptll|Mexecute scriptiill
AN EEEE NSNS EEEEEEEENEEEEEEENNNENEEEEY EEGEEGENGEEEES DNNNEEEREEEEEEEER

https://flaviocopes.com/javascript-async-defer/ @

Applicazioni Web | - Web Applications | - 2019/2020

https://flaviocopes.com/javascript-async-defer/

New loading attributes

* <script async src="script.js"></script>
— Script will be fetched in parallel to parsing and evaluated as soon as it is available
— Not immediately executed, not blocking

e <script defer src="script.js"></script> (preferred)

— Indicate to a browser that the script is meant to be executed after the document
has been parsed, but before firing DOMContentLoaded (that will wait until the
script is finished)

— Guaranteed to execute in the order they are loaded

e Both should be placed in the <head> of the document

Applicazioni Web | - Web Applications | - 2019/2020

Defer vs async behavior

With async, script in “head’

ready

ARREENEENEERRRRRRRRRNRARRARRENEED
BENNEERstart parsing HTMLESSEEEES
ARREEEEEEEENRRRRRRRRNRNNNRRRENEED

.. .vait... 000

ARRRERENEERNEEEERRRRRRRNNNNRRRNANNNNNNNRANR
RENRNEREEERNresume parsing HTMLESEEEEREESES
ANREEREEEEERERERRRRRRRNNNNNNNNNRENNNNNNRENR

(L]]
Bfetch scripth
ANNRENREREERER

Pexecute scriptpl

With defer, script in “head’

ready

AREEENEENRRRRRRRRRNNNA NN NN RARRNRENANEREEENEEENNENRRARRRRRANNN | AREREEEREEERRRENY
AREEEREEERRRRRRRRRNRNRNNNRNNNNERRpe rse HTHLARERRNNRRENRRRNRRERRRRRRRRRRNNNNNN (Rexecute scriptill
AREEEEEEEEERRRRRRRNNENE NN NN ERRNNNNN NN EEEEEEEEENRRRRRRRNNN | RREREEEREEERNRENE

(L]]
PBfetch scripth
ERNNERNERNEEEN

https://flaviocopes.com/javascript-async-defer/

Applicazioni Web | - Web Applications | - 2019/2020

https://flaviocopes.com/javascript-async-defer/

References

* Web Engineering SS20 - TU Wien, prof. Jirgen Cito, https://web-
engineering-tuwien.github.io/

* Async and defer

— Efficiently load JavaScript with defer and async, Flavio Copes,
https://flaviocopes.com/javascript-async-defer/

— https://hacks.mozilla.org/2017/09/building-the-dom-faster-speculative-parsing-
async-defer-and-preload/

Applicazioni Web | - Web Applications | - 2019/2020

https://web-engineering-tuwien.github.io/
https://flaviocopes.com/javascript-async-defer/
https://hacks.mozilla.org/2017/09/building-the-dom-faster-speculative-parsing-async-defer-and-preload/

() DO
License

* These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
* You are free to:
— Share — copy and redistribute the material in any medium or format
— Adapt — remix, transform, and build upon the material
— The licensor cannot revoke these freedoms as long as you follow the license terms.

* Under the following terms:

— Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

— NonCommercial — You may not use the material for commercial purposes.

— ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

— No additional restrictions — You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

* https://creativecommons.org/licenses/by-nc-sa/4.0/

O OA® ®E

Applicazioni Web | - Web Applications | - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

