
REST API
The glue between clients and servers

Enrico Masala

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2019/2020



2

Goal

Applicazioni Web I - Web Applications I - 2019/2020

Database Service(s)

Application

• Web backend
• Web frontend
• IoT device
• Mobile app



3

REST

• Representational State Transfer 

• A style of software architecture for distributed systems

• Platform-independent

– you don't care if the server is Unix, the client is a Mac, or anything else

• Language-independent

– C# can talk to Java, etc.

• Standards-based

– runs on top of HTTP

• Can easily be used in the presence of firewalls

Applicazioni Web I - Web Applications I - 2019/2020



4

What is a Resource?

• A resource can be anything that has identity

– a document or image

– a service, e.g., "today's weather in New York"

– a collection of other resources

– non-networked objects (e.g., people)

• The resource is the conceptual mapping to an entity or set of entities, 
not necessarily the entity that corresponds to that mapping at any 
particular point in time!

Applicazioni Web I - Web Applications I - 2019/2020



5

REST Architecture

Applicazioni Web I - Web Applications I - 2019/2020

Database Service(s)

Application
• Web backend
• Web frontend
• IoT device
• Mobile app

Resource(s)



6

Main Principles

• Resource: source of specific information

• Mapping: Resources  URIs

• Client and server exchange representations of the resource

– the same resource may have different representations

– e.g., XML, JSON, HTML, RDF, …

Applicazioni Web I - Web Applications I - 2019/2020



7

JSON - JavaScript Object Notation

• Lightweight Data Interchange Format

– Subset of JavaScript syntax for object literals

– Easy for humans to read and write

– Easy for machines to parse and generate

– https://www.json.org/

– ECMA 404 Standard: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

– RFC 8259: https://tools.ietf.org/html/rfc8259

• Media type: application/json

Applicazioni Web I - Web Applications I - 2019/2020

/ˈdʒeɪ·sən/

https://www.json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc8259


8

JSON Logical Structure

• Primitive types: string, number, true/false/null
– Strings MUST use "double" quotes, not 'single'

• Composite type – Array: ordered lists of values

• Composite type – Objects: list of key-value pairs
– Keys are strings (not identifiers)

– MUST be "quoted"

Applicazioni Web I - Web Applications I - 2019/2020



9

JSON Example

{
"firstName": "John",
"lastName": "Smith",
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021

},
"phoneNumbers": [

"212 555-1234",
"646 555-4567"

]
}

Name/Value Pairs

Number data 
type

String Array

Child 
properties

Applicazioni Web I - Web Applications I - 2019/2020



10

JSON Full Syntax

Applicazioni Web I - Web Applications I - 2019/2020



11

Using JSON in JavaScript

• JSON.stringify to convert objects into JSON

– const aString = JSON.stringify(myObj)

– Works recursively also on nested objects/arrays

– Excludes function properties (methods) and undefined-valued properties

• JSON.parse to convert JSON back into an object

– const myObj = JSON.parse(aString)

– All created objects have the default {} Object prototype
• Can fix with a reviver callback

Applicazioni Web I - Web Applications I - 2019/2020

https://javascript.info/json

https://javascript.info/json


12

REST Architecture

Applicazioni Web I - Web Applications I - 2019/2020

Database Service(s)

Application
• Web backend
• Web frontend
• IoT device
• Mobile app

Resource(s)
Representation

(json)
Identification

(URI)



13

Main Types of Resources

• Collection resource
– Represents a set (or list) of resources of the same type

– Format: /resource
• http://api.polito.it/students 

• http://api.polito.it/courses

• Element (Item, Simple) resource
– Represents a single item, and its properties

– Has some state and zero or more sub-resources
• Sub-resources can be simple resources or collection resources

– Format: /resource/identifier
• http://api.polito.it/students/s123456

• http://api.polito.it/courses/01zqp

Applicazioni Web I - Web Applications I - 2019/2020



14

Best Practice

• Nouns (not verbs)

• Plural nouns

• Concrete names (not abstract)

– /courses, not /items

Applicazioni Web I - Web Applications I - 2019/2020



15

Main Principles

• Resources support Operations (Actions)

– Add

– Delete

– Update

– Find

– Search

– …

Applicazioni Web I - Web Applications I - 2019/2020



16

Operations

REST Architecture

Applicazioni Web I - Web Applications I - 2019/2020

Database Service(s)

Application
• Web backend
• Web frontend
• IoT device
• Mobile app

Resource(s)
Representation

(json)
Identification

(URI)



17

Actions use HTTP Methods

• GET
– Retrieve the representation of the resource (in the HTTP response body)

– Collection: the list of items

– Element: the properties of the element

• POST
– Create a new resource (data in the HTTP request body)

– Use a URI for a Collection

• PUT
– Update an existing element (data in the HTTP request body)

– Mainly for elements' properties

• DELETE

Applicazioni Web I - Web Applications I - 2019/2020



18

Operations

REST Architecture

Applicazioni Web I - Web Applications I - 2019/2020

Database Service(s)

Application
• Web backend
• Web frontend
• IoT device
• Mobile app

Resource(s)

Protocol
(http)

Representation
(json)

Identification
(URI)



19

Actions on Resources: Example

Resource GET POST PUT DELETE

/dogs List dogs Create a new 
dog

Bulk update 
dogs
(avoid)

Delete all dogs
(avoid)

/dogs/1234 Show info 
about the dog 
with id 1234

ERROR If exists, update
the info about 
dog #1234

Delete the dog 
#1234

Applicazioni Web I - Web Applications I - 2019/2020



20

Relationships

• A given Element may have a (1:1 or 1:N) relationship with other 
Element(s)

• Represent with: /resource/identifier/resource

• http://api.polito.it/students/s123456/courses (list of courses followed 
by student s123456)

• http://api.polito.it/courses/01qzp/students (list of students enrolled 
in course 01qzp)

Applicazioni Web I - Web Applications I - 2019/2020



21

Representations

• Returned in GET, sent in PUT/POST
• Different formats are possible
• Mainly: XML, JSON

– But also: SVG, JPEG, TXT, …
– In POST: URL-encoding

• Format may be specified in
– Request headers

• Accept: application/json

– URI extension
• http://api.polito.it/students/s123456.json

– Request parameter
• http://api.polito.it/students/s123456?format=json

Applicazioni Web I - Web Applications I - 2019/2020



22

Real World Examples

Applicazioni Web I - Web Applications I - 2019/2020

https://developer.github.com/v3/ https://developer.twitter.com/en/docs/api-reference-index

https://developers.google.com/calendar/v3/reference/ https://developers.google.com/youtube/v3/docs



23

Complex resource search

• Use ?parameter=value for more advanced resource filtering (or 
search)

– E.g., 
https://api.twitter.com/1.1/statuses/user_timeline.json?scre
en_name=twitterapi&count=2

Applicazioni Web I - Web Applications I - 2019/2020



24

Errors

• When errors or exceptions are encountered, use meaningful HTTP Status 
Codes

– The Response Body may contain additional information (e.g., informational error 
messages)

Applicazioni Web I - Web Applications I - 2019/2020

{
"developerMessage" : "Verbose, plain language description of 

the problem for the app developer with hints about how to fix 
it.",

"userMessage":"Pass this message on to the app user if 
needed.", 

"errorCode" : 12345, 
"more info": "http://dev.teachdogrest.com/errors/12345"

} 



25

Authorization: OAuth 
oauth_consumer_key="xvz1evFS4wEEPTGEFPHBog", …

Twitter Streaming API

Authorization: AWS 
AKIAIOSFODNN7EXAMPLE:frJIUNo//yllqDzg=

Amazon Web Services API

Authorization: Bearer 1/fFBGRNJru1FQd44AzqT3Zg

Google API

Authentication

Applicazioni Web I - Web Applications I - 2019/2020



26

API Design

• How to design a set of APIs for your
application?

• Practical guidelines, with applied standard 
practices

• Suggestion: Google API Design Guide

– https://cloud.google.com/apis/design/

Applicazioni Web I - Web Applications I - 2019/2020

http://apistylebook.com/design/guidelines/

https://cloud.google.com/apis/design/


27

API Design Flow

1. Determine what types of resources an API provides.

2. Determine the relationships between resources.

3. Decide the resource name schemes based on types and relationships.

4. Decide the resource schemas.

5. Attach minimum set of methods to resources.

Applicazioni Web I - Web Applications I - 2019/2020



28

Example (Gmail API)

Applicazioni Web I - Web Applications I - 2019/2020



29

Standard Methods

Let’s read: 
https://cloud.google.com/apis/design/standard_methods

Applicazioni Web I - Web Applications I - 2019/2020

https://cloud.google.com/apis/design/standard_methods


30

Guidelines
(1/2)

URL Design

Plural nouns for collections /dogs

ID for entity /dogs/1234

Associations /owners/5678/dogs

HTTP Methods POST GET PUT DELETE

Bias toward concrete names /dogs (not animals)

Multiple formats in URL /dogs.json
/dogs.xml

Paginate with limit and offset ?limit=10&offset=0

Query params ?color=red&state=running

Partial selection ?fields=name,state

Use medial capitalization "createdAt": 1320296464
myObject.createdAt;

Use verbs for non-resource 
requests

/convert?from=EUR&to=CNY&amount=100

Search /search?q=happy%2Blabrador

DNS api.foo.com
developers.foo.com

Applicazioni Web I - Web Applications I - 2019/2020



31

Errors

Status Codes 200 201 304 400 401 403 404 500

Verbose messages {"msg": "verbose, plain language hints"}

Versioning

Include version in URL /v1/dogs

Keep one previous version long enough 
for developers to migrate

/v1/dogs
/v2/dogs

Client Considerations

Client does not support HTTP status
codes

?suppress_response_codes=true

Client does not support HTTP 
methods

GET /dogs?method=post
GET /dogs
GET /dogs?method=put
GET /dogs?method=delete

Complement API with SDK and code 
libraries

1. JavaScript
2. …
3. …

Guidelines (2/2)

Applicazioni Web I - Web Applications I - 2019/2020



32

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format 
– Adapt — remix, transform, and build upon the material 
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were 

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or 
your use. 

– NonCommercial — You may not use the material for commercial purposes. 
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions 

under the same license as the original. 
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict 

others from doing anything the license permits. 

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

