
Context, Life Cycle,
Forms
Making React Components Alive

Enrico Masala

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2019/2020

2

Outline

• React Elements
– Creating
– JSX language

• React Components
– Defining
– Props and State
– Context
– Lifecycle

• Forms
• React design process

– Top-down information flow
– Defining state
– Adding Reverse flow

Applicazioni Web I - Web Applications I - 2019/2020

Part 1

Part 2

3

CONTEXT
Sort-of Globally Available Props (to avoid props drilling)

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/context.html

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

React Handbook, Chapter “Context API”

https://reactjs.org/docs/context.html

4

Context

Unidirectional information flow +

Functional components =

--

Must pass every prop to the
component that needs it, and

sometimes it means “drilling
through” many components with

several props

• Solution: the Context API offers a
“global” set of props that are
“automatically” available to
lower components

– Without declaring them explicitly at
every level

• “Props teleporting”

Applicazioni Web I - Web Applications I - 2019/2020

5

Examples

• The current visual theme for the whole page (e.g., dark, light, …)

– Needed by most visual components (towards the bottom of the tree)

– Not needed by any container component

• Logged in/logged out status (and basic user information)

– Needed to enable/disable large portions of the page

– Needed to provide user info in various parts of the page (e.g., avatar)

– Needed to call remote APIs with user-related queries

• Shared data cache

Applicazioni Web I - Web Applications I - 2019/2020

6

Context Ingredients

• Context definition
– const ExampleContext = React.createContext()

– Defines a context object with a name

• Context provider
– <ExampleContext.Provider value=...> component

– Injects the context value into all nested components

• Context consumer
– MyComponent.contextType = ExampleContext

• Context value available in this.context

– <ExampleContext.Consumer>
• Renders a function that receives the context value as a parameter

Applicazioni Web I - Web Applications I - 2019/2020

7

Context Definition

• const ExContext = React.createContext(defaultValue)

• Creates a new Context object

– ExContext.Provider and ExContext.Consumer

– Contains the value of one object

– The ExContext identifier is used in value propagation

• Components may subscribe (consume) to this context

– The provided value comes from the closest Provider ancestor

– If no provider is found, the defaultValue is used

– In all other cases, defaultValue is ignored

Applicazioni Web I - Web Applications I - 2019/2020

8

Context Provider

• A component ExContext.Provider is automatically created for each
new Context

• The component specifies a value prop, that is available to all nested
“consumer” components (even if deeply nested)

– Consumers MUST be nested inside the provider

– Providers may be anywhere (assuming the context object is visible)

• Providers may be nested: each level may override the previous value

• When the Provider’s value changes, all consumers will re-render

Applicazioni Web I - Web Applications I - 2019/2020

9

Context Consumer (function or class component)

• The component <ExContext.Consumer> may be used in the render
function/method

• You must provide a callback function that

– Receives the context value (from the closest provider, or defaultValue if not
provider is found)

– Returns the React Element to be rendered

Applicazioni Web I - Web Applications I - 2019/2020

<ExContext.Consumer>
{value => /* render something

based on the context value */}
</ExContext.Consumer>

10

Context Consumer (class component)

• You may add a class property contextType to any consumer
component (defined with the class syntax)

• It creates the property this.context that contains the (closest)
provider’s value

– May be used in all component’s methods

Applicazioni Web I - Web Applications I - 2019/2020

class MyComponent extends React.Component {

render() {

... Use this.context ...

}

}

MyComponent.contextType = ExContext;

class MyComponent extends React.Component {

static contextType = ExContext;

render() {

... Use this.context ...

}

}

11

Changing context values

• When a Consumer child needs to update the context value, the Provider
must provide a function callback to perform the update

– As a prop (by drilling the nesting levels)

– As part of the context value

• Remember: the state is part of the component containing the Provider

– Not in the provider itself

– Not in the context object

Applicazioni Web I - Web Applications I - 2019/2020

12

Example

Applicazioni Web I - Web Applications I - 2019/2020

class Container extends React.Component {
constructor(props) {

super(props)
this.state = {
msg: 'hey'

}
}

render() {
return (
<Ctx.Provider value={{

state: this.state,
updateMsg: () =>

this.setState({msg: 'ho!'})
}}>
{this.props.children}

</Ctx.Provider>
)

}
}

class Button extends React.Component {
render() {

return (
<Ctx.Consumer>

{(context) => (
<button onClick={context.updateMsg}>

{context.state.msg}</button>
)}

</Ctx.Consumer>
);

}
}

class HelloWorld extends React.Component {
render() {

return <Container>
<Button />

</Container> ;
}

}

Adapted from https://glitch.com/~flavio-react-context-api-example

https://glitch.com/~flavio-react-context-api-example

13

Caveats

• Don’t put everything into Context

– Defeats component portability

– Reduces “purity” of functional components

• Don’t use it for programming laziness

– Explicit parameter passing is also a good documentation practice

• Don’t use it to correct design errors

– Often, a refactoring of the component tree (and props/state lifting) may be a
cleaner solution

Applicazioni Web I - Web Applications I - 2019/2020

14

…before you consider Context

• Passing a component as a prop (inversion of control)
– When a nested components needs many props from and upper component

– The upper component defines JSX of the element (using the available info)

– The component itself is passed as a prop (just one prop, that will be passed and
rendered)

• Use “render props”
– Callback functions as props (https://reactjs.org/docs/render-props.html)

– The lower component will call the “render prop” at render time, that has access
to the upper component’s props and state

• Use Children Components

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/render-props.html

15

Children Components and props.children

• Every time we nest components in JSX, a special prop is added

– props.children
• A single element

• A list of elements

• In the component, you may render {this.props.children} to
include the nested elements

Applicazioni Web I - Web Applications I - 2019/2020

return (
<Container>

<Article headline="An interesting Article">
Content Here

</Article>
</Container>

)

class Container extends React.Component {

render() {

return <div className="container">

{this.props.children}

</div>;

}

16

Manipulate your children

• this.children is an iterable data structure (React.Children)

– May use .map() to create a list of (modified) children

– May use .forEach() to iterate and examine the children

• For ease of manipulation, we may use .toArray()

– All array methods (e.g., .sort()) may be used

• The children may be “customized” by the parent

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/react-api.html#reactchildren

https://reactjs.org/docs/react-api.html#reactchildren

17

COMPONENTS’ LIFECYCLE
There’s life before and after render()

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/state-and-lifecycle.html

https://reactjs.org/docs/react-component.html

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/react-component.html

18

Lifecycle events

• The render() method is the most important action for a component

• Several other methods may be defined, to customize what happens at
different moments in the evolution of the component

Applicazioni Web I - Web Applications I - 2019/2020

Mounting Updating Unmounting

The component is being
created and inserted into

the DOM

The component is being re-
rendered

The component is being
removed from the DOM

19

Lifecycle methods

Applicazioni Web I - Web Applications I - 2019/2020

http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

20

Mounting methods

• constructor()

– super(props)

– Initialize local state with
this.state = {…}
• Don’t call setState

– Bind event handler methods (if
needed)

– Should not have side-effects or
subscriptions

• render()

• componentDidMount()

– Invoked immediately after a
component is mounted

– Initialization that requires the
existence of DOM nodes

– Load data from a remote endpoint
(REST API)

– May call setState (triggers an
extra render)

Applicazioni Web I - Web Applications I - 2019/2020

21

Updating/Unmounting methods

• componentDidUpdate()

– Invoked immediately after updating
occurs

– Not called for the initial render

– May launch network requests (only
if props have changed!)

– May call setState, but only
conditionally (will cause infinite
loop)

• componentWillUnmount()

– invoked immediately before a
component is unmounted and
destroyed

– Perform cleanup (timers, pending
network requests, subscriptions…)

– Don’t call setState

– Once a component instance is
unmounted, it will never be
mounted again
• Possibly, a new instance will be created

Applicazioni Web I - Web Applications I - 2019/2020

22

Lifecycle methods (full)

Applicazioni Web I - Web Applications I - 2019/2020

23

Controlling rendering

• TL;DR: Don’t do this! Let React decide what needs to be rendered when

• shouldComponentUpdate()
– If it returns false, React will skip the render() phase

• By default, we re-render on every state change

– Might be used for performance optimization, but may be dangerous

– Consider also using a PureComponent (faster, re-renders less frequently, but
must ensure string “purity” of all methods and child components)

• forceUpdate()
– Forces a re-render of the component (if it depends from other data than props

and state)

– Not recommended

Applicazioni Web I - Web Applications I - 2019/2020

24

Error handling methods

• When errors happen, React displays an error page (with stack trace, if in
development mode)

• You may catch and control errors from your child component

• A Component becomes an “Error Boundary” by implementing:

– getDerivedStateFromError()

– componentDidCatch()

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/react-component.html#error-boundaries

https://reactjs.org/docs/error-boundaries.html

https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html

25

Error handling methods

• static
getDerivedStateFromError(e
rror)
– Invoked after an error has been thrown

by a descendant component

– Receives the error that was thrown

– Return a value to update state
• Hoping to correct the issue

• Rendering an alternate interface

– Called during the “render” phase, so
side-effects are not permitted

• componentDidCatch(error,
information)
– Invoked after an error has been thrown

by a descendant component

– Receives the error that was thrown

– Receives a componentStack with
information about the error
location

– Called during the “commit” phase, so
side-effects are permitted

– Use for logging

– Don’t call setState

Applicazioni Web I - Web Applications I - 2019/2020

26

FORMS IN JSX
Forms, Events and Event Handlers

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/forms.html

Full Stack React, Chapter “Forms”

React Handbook, Chapter “JSX”

https://reactjs.org/docs/forms.html

27

HTML Forms

• HTML Forms are inconsistent: different ways of handling values, events
etc. depending on the type of input element

– Consequence of backward compatibility

• For instance:

– onChange on a radio button is not easy to handle

– value in a textarea does not work, etc.

• React flattens this behavior exposing (via JSX) a more uniform interface

– Synthetic Events

Applicazioni Web I - Web Applications I - 2019/2020

28

Value in JSX forms

• The value attribute always holds the current value of the field

• The defaultValue attribute holds the default value that was set when
the field was created

• This also applies to

– textarea: the content is in the value attribute; it is NOT to be taken from the
actual content of the <textarea>…</textarea> tag

– select: do not use the <option selected> syntax, but <select
value='id'>

Applicazioni Web I - Web Applications I - 2019/2020

29

Change events in JSX Forms

• React provides a more consistent onChange event

• By passing a function to the onChange attribute you can subscribe to
events on form fields (every time value changes)

• onChange also fires when typing a single character into an input or
textarea field

• It works consistently across fields: even radio, select and checkbox
input fields fire a onChange event

Applicazioni Web I - Web Applications I - 2019/2020

30

Event Handlers

• An Event Handler callback function is called with one parameter: an
event object

• All event objects have a standard set of properties

– event.target: source of the event

• Some events, depending on categories, have more specific properties

Applicazioni Web I - Web Applications I - 2019/2020

31

Synthetic Events

• “High level events” wrap the
corresponding DOM Events

• Same attributes as DOMEvent

• target points to the source of
the event.

• In case of a form element

– target.value = current input
value

– target.name = input element
name

Applicazioni Web I - Web Applications I - 2019/2020

boolean bubbles
boolean cancelable
DOMEventTarget currentTarget
boolean defaultPrevented
number eventPhase
boolean isTrusted
DOMEvent nativeEvent
void preventDefault()
boolean isDefaultPrevented()
void stopPropagation()
boolean isPropagationStopped()
void persist()
DOMEventTarget target
number timeStamp
string type

32

Synthetic Events
Category Events

Clipboard onCopy onCut onPaste

Composition onCompositionEnd onCompositionStart onCompositionUpdate

Keyboard onKeyDown onKeyPress onKeyUp

Focus onFocus onBlur

Form onChange onInput onInvalid onReset onSubmit

Generic onError onLoad

Mouse onClick onContextMenu onDoubleClick onDrag onDragEnd onDragEnter onDragExit onDragLeave onDragOver onDragStart onDrop onMouseDown
onMouseEnter onMouseLeave onMouseMove onMouseOut onMouseOver onMouseUp

Pointer onPointerDown onPointerMove onPointerUp onPointerCancel onGotPointerCapture onLostPointerCapture onPointerEnter onPointerLeave onPointerOver
onPointerOut

Selection onSelect

Touch onTouchCancel onTouchEnd onTouchMove onTouchStart

UI onScroll

Wheel onWheel

Media onAbort onCanPlay onCanPlayThrough onDurationChange onEmptied onEncrypted onEnded onError onLoadedData onLoadedMetadata onLoadStart onPause
onPlay onPlaying onProgress onRateChange onSeeked onSeeking onStalled onSuspend onTimeUpdate onVolumeChange onWaiting

Image onLoad onError

Animation onAnimationStart onAnimationEnd onAnimationIteration

Transition onTransitionEnd

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/events.html

https://reactjs.org/docs/events.html

33

Tip: Defining Event Handlers

• Define the function as a class
property

– As an arrow function

– As a function expression, but
remember to bind it in the
constructor

Applicazioni Web I - Web Applications I - 2019/2020

this.handler = () => { ... }

constructor(){
this.handler = this.handler.bind(this);
}
handler () { ... }

constructor(){
this.handler = this.handler.bind(this);
}
handler = function() { ... }

handler = function() { ... }

handler () { ... }

34

Tip: Defining Event Handlers

• Pass the name of the function as
a prop

– As a function object (not string)

– Don’t call the function

Applicazioni Web I - Web Applications I - 2019/2020

return <div handler={this.handler} />

return <div handler={this.handler()} />

return <div handler='this.handler' />

35

Tip: Defining Event Handlers

• Specify the name of the function
prop in the event handler

• If you need to pass parameters,
use an arrow function

Applicazioni Web I - Web Applications I - 2019/2020

return <button onClick=

{props.handler} />

return <button onClick=

{props.handler()} />

return <button onClick=

{props.handler(a, b)} />

return <button onClick=

{()=>props.handler()} />

return <button onClick=

{()=>props.handler(a, b)} />

36

Who owns the state?

• Form elements are inherently stateful: they hold a value

– Input text form, selection, etc.

• React components are designed to handle the state

• The props and state are used to render the component

– To correctly render the component from the virtual DOM, React needs to know
which value must be set in the form element

– Hence, on every change (onChange) React must be notified to get the new value
and update the component state

Applicazioni Web I - Web Applications I - 2019/2020

37

Where is the source of truth?

Controlled Components

• When the React component
holds, in its state, the value to be
shown in the form element, it is
named a controlled component

Uncontrolled components

• In some occasions, it could be
useful to keep the value directly
in the HTML form element in the
DOM: uncontrolled component

– Legacy code

– Read-only components (e.g., file
selection)

Applicazioni Web I - Web Applications I - 2019/2020

38

Controlled components

Applicazioni Web I - Web Applications I - 2019/2020

React Component

Form Element

render()
- value={this.state.x}
- onChange={this.changeX}

changeX = (event) => {
this.setState(

{x: event.target.value});
}

onChange events

x displayed as value

constructor(){
this.state.x=0;

}
Update
state

39

Controlled component

• The event handler changes the state, setState() starts the update of
the virtual DOM that then updates the actual DOM content

Applicazioni Web I - Web Applications I - 2019/2020

class MyForm extends React.Component {
constructor(props) {
super(props);
this.state = { name: '' };

}
render() {
return <form onSubmit={this.handleSubmit}>

<label> Name:
<input type="text" value={this.state.value}

onChange={this.handleChange} />
</label>
<input type="submit" value="Submit" />

</form>
}

handleSubmit = (event) => {

console.log('Name submitted: ' +
this.state.value);

event.preventDefault();

}

handleChange = (event) => {

this.setState(

{name: event.target.value}

);

};

}

40

Tip: State Update for Multiple Fields

• Define only one onChange
handler for all fields

• Ensure the input components
have the same name as the state
properties

• Use the “computed property”
assignment in setState

• Avoids creating may independent
change handlers

Applicazioni Web I - Web Applications I - 2019/2020

updateField = (name, value) => {

this.setState({[name]: value});

}

<input name='x' value={props.x}

onChange={(ev) =>

props.updateField(

ev.target.name, ev.target.value)} />

render() {
return <MyForm
updateField={this.updateField}
x={this.state.x} />

}

41

Uncontrolled components

Applicazioni Web I - Web Applications I - 2019/2020

React Component

Form Element

render()
- defaultValue={this.props.x}
- onSubmit={this.submitForm}

submitForm = (event) => {
this.props.saveData(…);

}

onChange

x displayed as initial value

NO
state

onSubmit

42

Uncontrolled component

• Create a reference from React to the DOM element. No onChange event
handler required. Use defaultValue for initial value, if required (no state)

Applicazioni Web I - Web Applications I - 2019/2020

class MyForm extends React.Component {
constructor(props) {
super(props);
this.state = { name: '' };
this.input = React.createRef();

}
render() {
return <form onSubmit={this.handleSubmit}>

<label> Name:
<input type="text" ref={this.input} />

</label>
<input type="submit" value="Submit" />

</form>
}

handleSubmit = (event) => {

console.log('Name submitted: ' +
this.input.current.value);

event.preventDefault();

}

}

43

Controlled vs Uncontrolled

• If possible, use controlled components to implement forms

• In a controlled component, form data is explicitly handled by React
components

• Some components do not allow set value by JS code: no alternative to
uncontrolled component (e.g., file selection)

Applicazioni Web I - Web Applications I - 2019/2020

44

DOM Component References (ref)

• For uncontrolled components, the “current” state is in the DOM
component, according to user inputs

– How to retrieve it?

• For HTML5 forms, many validation methods and attributes already exist

– How to re-use them, instead of re-programming everything in React?

• Some custom components (e.g., media players, map widgets, …) may be
controlled through custom methods and attributes

– How to access their functionality?

• Answer: get a reference to the (generated) DOM Node

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/refs-and-the-dom.html

https://reactjs.org/docs/refs-and-the-dom.html

45

Creating and Using Refs

• Create a local property with
createRef()

– this.myRef =
React.createRef()

• Link the reference to the DOM
now with ref attribute

– return <div
ref={this.myRef} …/>

• Ref is automatically linked when
the component is mounted

• The node will be available under
the current attribute

– this.myRef.current

• All node attributes are available
under current

– this.myRef.current.value

• Works for DOM nodes and for
class components (not function
components)

Applicazioni Web I - Web Applications I - 2019/2020

https://reactjs.org/docs/refs-and-the-dom.html

https://reactjs.org/docs/refs-and-the-dom.html

46

Callback Refs (older method)

• You may manually link a ref using
a “Callback Ref”

• Define a function on the ref
attribute

• The function receives a reference
to the DOM node, that can be
stored in a component property

• The node itself is this.myRef
(not .current)

<div ref={

myRef =>

this.myRef = myRef }>

Applicazioni Web I - Web Applications I - 2019/2020

47

Tip: Form Submission

• The onSubmit event is generated by the <form> element

• Always event.preventDefault() to avoid the submission (and
reloading of the page)

• Perform validation of all form data before proceeding

– Using checks on this.state (on a controlled component, it contains updated
information) – may use validator https://github.com/validatorjs/validator.js

– Using HTML5 validation attributes
and methods (need a ref to the
<form> to access the methods)

Applicazioni Web I - Web Applications I - 2019/2020

doSubmit = (item) => {

if (this.formRef.checkValidity()) {

this.props.sendItem(item);

} else {

this.formRef.reportValidity();

}

}

https://github.com/validatorjs/validator.js

48

Alternatives to controlled components

• Sometimes, it is tedious to use controlled components

– Need to write an event handler for every way data can change

– Pipe all of the input state through a React component

• Alternatively, use a library such as Formik

– Keep things organized without hiding them too much

– Form state is inherently ephemeral and local: does not use state management
solutions such as Redux/Flux which would unnecessary complicate things

– Includes validation, keeping track of the visited fields, and handling form
submission

Applicazioni Web I - Web Applications I - 2019/2020

https://jaredpalmer.com/formik

https://jaredpalmer.com/formik

49

Tips: Handling Arrays in State

• React setState() with objects does a shallow merge of the properties

– What happens when a property is an array? What is the correct way to handle
arrays in React state?

• Use a new array as the value of the property

• Use a callback to ensure no modifications are missed

• Typical cases

– Add items

– Update items

– Remove items

Applicazioni Web I - Web Applications I - 2019/2020

https://www.robinwieruch.de/react-state-array-add-update-remove

https://www.robinwieruch.de/react-state-array-add-update-remove

50

Adding Items in Array with setState()

Applicazioni Web I - Web Applications I - 2019/2020

https://www.robinwieruch.de/react-state-array-add-update-remove

// Append at the end: use concat()
// NO .push(): returns the number of elements,
not the array
...

this.state = {
list: ['a', 'b', 'c'],

};
...

this.setState(state => {
const list = state.list.concat(state.value);
return { list: list };

})

// Insert value(s) at the beginning
// use spread operator

...

this.state = {
list: ['a', 'b', 'c'],

};
...

this.setState(state => {
const list = [newItem, ...state.list];
return { list: list };

})

shortcut:
return { list };
(Shorthand property names (ES6))

https://www.robinwieruch.de/react-state-array-add-update-remove

51

Updating Items in Array with setState()

Applicazioni Web I - Web Applications I - 2019/2020

https://www.robinwieruch.de/react-state-array-add-update-remove

// Update item: use map()

...

this.state = { list: [11, 42, 32], };

...

// i is the index of the element to update

this.setState(state => {

const list = state.list.map((item, j) => {

if (j === i) {

return item + 1; // update the item

} else {

return item;

}

});

return { list };

});

https://www.robinwieruch.de/react-state-array-add-update-remove

52

Removing Items from Array with setState()

Applicazioni Web I - Web Applications I - 2019/2020

https://www.robinwieruch.de/react-state-array-add-update-remove

// Remove item: use filter()

...

this.state = { list: [11, 42, 32], };

...

// i is the index of the element to remove

this.setState(state => {

const list =

state.list.filter((item, j) => i !== j);

return { list };

});

// Remove first item(s): use destructuring

...

this.state = { list: [11, 42, 32], };

...

this.setState(state => {

const [first, ...list] = state.list;

return { list };

});

https://www.robinwieruch.de/react-state-array-add-update-remove

53

Tip: Heuristics for State Lifting

• Presentational components
– Forms, Tables, Lists, Widgets, …

– Should contain local state to represent their display property

– Sort order, open/collapsed, active/paused, …

– Such state is not interesting outside the component

• Application components (or Container components)
– Manage the information and the application logic

– Usually don’t directly generate markup, generate props or context

– Most application state is “lifted up” to a Container

– Centralizes the updates, single source of State truth

Applicazioni Web I - Web Applications I - 2019/2020

54

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

