<WA1/>
2020

Hooks

Supercharge function components

Enrico Masala
Fulvio Corno
Luigi De Russis

Applicazioni Web | - Web Applications | - 2019/2020 ‘@@@@\

Outline

Hooks: Why and What?

Main hooks
— useState
— usekEffect
— useContext

The “Rules” of Hooks

Custom Hooks

Appl

icazioni Web | - Web Applications | - 2019/2020

l Full Stack React, “Appendix C: React Hooks”
React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-intro.html

Why? and What?

HOOKS

Applicazioni Web | - Web Applications | - 2019/2020 H

https://reactjs.org/docs/hooks-intro.html

Classes vs. Functions (2"? Act)

Function component

Simple

Class component

Pure function (props->render) .

No state
No lifecycle

May define handler functions .
(not very useful, in absence of .

state)
No side effects

More complex

‘bind’ issues

May have state

Has lifecycle methods

May define handler functions
No side effects in render()

Side effects in handlers and
lifecycle

Applicazioni Web | - Web Applications | - 2019/2020

Classes vs. Functions (2"? Act)

Function component Class component
e Simple * More complex
e Pure function (props->render) * ‘bind’ issues

* No state * May have state

* No lifecycle

* May define handler functio

(nOt very USEfU', in absence Can we retain function components’ simplicity
state) and add the possibility of managing state,

* No side effects

lifecycle and side effects?

Applicazioni Web | - Web Applications | - 2019/2020

Reusing stateful logic

* If you need to share the same state-management logic in two different
(class) components, you have to repeat it twice

— E.g., keeping the state of an <input> up to date

e Current solutions are: higher-order components or render props, but
they add significant complexity

Can we find a way to “encapsulate” some

functionality, in a way that it’s easy to import in
different components?

Applicazioni Web | - Web Applications | - 2019/2020

Lifecycle methods are confusing

 Component lifecycle may be difficult to understand

* The code related to a functionality is usually split across several methods

— E.g., set a state in constructor, fetch the updated value in
componentDidMount, remove subscriptions in componentiWillUnmount

— Each method contains a mix of different concerns
— Each functionality is spread in different parts of the code

Can we keep the code related to a single

functionality in a single place?

Applicazioni Web | - Web Applications | - 2019/2020 I

Hooks

* Proposed in October 2018 — https://youtu.be/dpw9EHDh2bM
e Stable since React 16.8 (February 2019)

e Additions to function components to access advanced features
* One hook call for each requested functionality

* |In many cases, they replace class components

e Easy to extend and customize

* Hooks = special functions called by function components

Applicazioni Web | - Web Applications | - 2019/2020

https://youtu.be/dpw9EHDh2bM

Most popular Hooks
Mook lewpose

useState Define a state variable in the component

useEffect Define a side-effect during the component lifecycle

useContext Act as a context consumer for the current component

useReducer Alternative to useState for Redux-like architectures or complex state logic

useMemo “Memoizes” a value (stores the result of a function and recomputes it only if parameters change)
useCallback Creates a callback function whose value is memoized

useRef Access to childrens’ ref properties

useLayoutEffect Like useEffect, but runs after DOM mutations

useDebugValue Shows a value in the React Developer Tools

https://reactis.org/docs/hooks-reference.htnb

Applicazioni Web | - Web Applications | - 2019/2020

https://reactjs.org/docs/hooks-reference.html

l Full Stack React, “Appendix C: React Hooks”
React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-state.html

Providing function components with a state

USESTATE HOOK

Applicazioni Web | - Web Applications | - 2019/2020 ﬁ

https://reactjs.org/docs/hooks-state.html

useState

import React, { useState } from 'react’;
import ReactDOM from 'react-dom’;

* (Creates a new state variable

— Usually, a “simple” value
function ShortText({ text, maxLength }) {

_ May be an ObJECt const [hidden, setHidden] = useState(true);
— Does not need to represent the PEEIE

complete component state Tl B
° YOU may access “${text.substr(@, maxLength)}... : text }
{hidden ? (
— The current value setHidden(false)}>more
:)+ (
— Afunction to update the state value setHidden(true)}>less
 Update)}

— With the new value);
}

— With a callback function

https://daveceddia.com/usestate—hook-examplese

Applicazioni Web | - Web Applications | - 2019/2020

https://daveceddia.com/usestate-hook-examples/

Creating a state variable

 import{ useState } from Creates a state variable of any type

'react’; — Remembered across function calls!
e const [hidden, setHidden] * The default value sets the initial

= useState(true); type and value

— Creates a new state variable * The variable name can be used

— hidden: name of the variable inside the function (to affect

— setHidden: update function rendering)

— true:default (initial) value * The setVariable() function will

— Array destructuring assignment to replace the current state with the

assign 2 values at once new one

— And trigger a re-render

Applicazioni Web | - Web Applications | - 2019/2020

Updating the state

* With a new value * With a function
— Dependent on props and constant (oldstate) => { return newstate; }
values — Executed as a callback
— Will replace the current one — When new state depends on old
state

— Should have the same type (for
consistent rendering) — The function return value will

replace the current state

setHidden(false) ; setSteps(prevState => prevState + 1);

Applicazioni Web | - Web Applications | - 2019/2020

Updating the state

e With a new value

— Dependent on props : Replace, not merge) => { return newstate; }

values od as a callback

/\ Different from this.setState() A\

— Will replace the curre ew state depends on old

state

— Should have the same type (for
consistent rendering) — The function return value will

replace the current state

setHidden(false) ; setSteps(prevState => prevState + 1);

Applicazioni Web | - Web Applications | - 2019/2020

The default value

e Used during the first render of the component

— Never used in successive renders

* May be computed from the props
— But will not update if the props change

 May be a value, or a function

— The function is called only during the initial render

Applicazioni Web | - Web Applications | - 2019/2020

Class vs Function+Hooks

function Example() {

// Declare a new state variable, called "count"
const [count,] = useState(0);

return (
<div>
<p>You clicked {count} times</p>
<button onClick={() => (count + 1)}>
Click me
</button>
</div>
)
}

class Example extends React.Component {

}

constructor(props) {
super(props);
this.state = {
count: ©
}s5
}

render() {
return (
<div>
<p>You clicked {this.state.count} times</p>
<button onClick={() => this. (
{ count: this.state.count + 1 })}>
Click me
</button>
</div>
)
}

Applicazioni Web | - Web Applications | - 2019/2020

Multiple state variables

* Do not use a single object for function Example(props) {
hOIdlng many (Uan|ated) [hidden, setHidden] = useState(true) ;
properties [count, setCount] = useState(0) ;

[mode, setMode] = useState('view') ;

* Create as many state variables as
needed, they are all independent

* No state merging is needed

 Component will re-render if any SEESRWE € = @05) £
state changes setMode('edit') ;

e Children components will re-
render only if their props change '}

setHidden(false) ;

Applicazioni Web | - Web Applications | - 2019/2020

l Full Stack React, “Appendix C: React Hooks”
React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-intro.html

Simple Way to Create a Context Consumer

USECONTEXT HOOK

Applicazioni Web | - Web Applications | - 2019/2020 H

https://reactjs.org/docs/hooks-intro.html

<WA1/>

Context, Life Cycle, $&
Forms
Making React Components Alive

Remember Context API?

%Pﬁ’

* Create a new context:
const NumberContext = React.createContext();

* Define a Context Provider component MyContext
<NumberContext.Provider value={42}> <MyContext.Provider>
<Display /> <MyContext.Consumer>

</NumberContext.Provider>

* Define one or more Context Consumer components

<NumberContext.Consumer>
{value => <div>The answer is {value}.</div>}
</NumberContext.Consumer>

Applicazioni Web | - Web Applications | - 2019/2020 H

Accessing context with Hooks

e The useContext hook allows
the current component to
consume the context

MyContext

<MyContext.Provider>

<MyContext.Consumer>

* The argument is a Context object

— Must have been created by .
React.createContext(); uncislon sealay() |

const value = useContext(NumberContext);

* The value depends on the closest

enC|OSing provider return <div>The answer is {value}.</div>;
}
— Must be nested inside

<MyContext.Provider>

Applicazioni Web | - Web Applications | - 2019/2020

Accessing context with Hooks

* The useContext hogk 2
the current compo MyContext

<MyContext.Provider>
consume the conte There is no way to create a new
context, or to create a context

* The argumentis a (provider, with Hooks

— Must have been cre
React.createCont

° The Va|ue dependS on the CIOSGSt const value = useContext(NumberContext);

enC|OSing provider return <div>The answer is {value}.</div>;
}

<MyContext.Consumer>

splay() {

— Must be nested inside
<MyContext.Provider>

Applicazioni Web | - Web Applications | - 2019/2020

Accessing multiple contexts

e May call useContext more than function HeaderBar() {

const user = useContext(CurrentUser);

once const notif = useContext(Notifications);
* All the context variables will be return (
available <header>
Welcome back, {user.name}!
* No need to nest components You have {notif.length} notifications.
</header>
)

}

https://daveceddia.com/usecontext-hook/ a

Applicazioni Web | - Web Applications | - 2019/2020

https://daveceddia.com/usecontext-hook/

Accessing multiple contexts

function HeaderBar() { function HeaderBar() {
return (const user = useContext(CurrentUser);
<currentuser. consumer> const notif = useContext(Notifications);
{user =>
<Notifications.Consumer>
{notif => return (
<header> <header>
Welcome back, {user.name}! Welcome back, {user.name}!
You have {notif.length} You have {notif.length} notifications.
notifications.
</header>
</header>
})s
</Notifications.Consumer> }
}

</CurrentUser.Consumer>

}" [] |

Applicazioni Web | - Web Applications | - 2019/2020

l Full Stack React, “Appendix C: React Hooks”
React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-effect.html

Side-effects and Life Cycle in Functional Components

USEEFFECT HOOK

Applicazioni Web | - Web Applications | - 2019/2020 a

https://reactjs.org/docs/hooks-effect.html

Side effects in function components

 Examples of desired side effects
— Data fetching
— Setting up a subscriptions (handlers, etc.), or removing them
— Manually changing the DOM in React components

* Think of the useEffect Hook as sort of “combined”:
— componentDidMount
— componentDidUpdate
— componentWillUnmount

Applicazioni Web | - Web Applications | - 2019/2020

How to useEffect

 useEffect(fn, [])

e Pass a function fn to do the work

— May have side effects (change state, call external URLs, ...)

— Function returns:
* Nothing

* A function, that will be called before the component leaves the screen, to do cleanup (e.g., of
subscription)

— Unlike componentDidMount and componentDidUpdate, ¥n fires after layout and paint,
during a deferred event

e Pass an optional array with the list of variables to monitor to determine if tn
must be called or not

— Can be omitted (default): fn will be called after every completed render

Applicazioni Web | - Web Applications | - 2019/2020 H

Four ways to call useEffect

* Once, when component mounts
— useEffect(()=>callOnce(), [])

 On every component render

— useEffect(()=>callEveryRender())
* On every component render, if some values changed

— useEffect(()=>callIfAnyDepChange(depl,dep2), [depl,dep2])
e When component unmounts

— useEffect(()=>{w.addListener();
return ()=>w.removelListener();}, [])

https://dev.to/spukas/4-ways-to-useeffect-pf6

Applicazioni Web | - Web Applications | - 2019/2020

https://dev.to/spukas/4-ways-to-useeffect-pf6

When are Effects executed?

* The useEffect function fires after layout and paint (after the render is
committed to the screen), during a deferred event

— Non blocking behavior
— But before the next Render phase

* The clean-up function runs before the component is removed from the
Ul

— Additionally, if a component renders multiple times, the previous effect is
cleaned up before executing the next effect

— To avoid repeated cleanup, ensure you specify the dependency array

Applicazioni Web | - Web Applications | - 2019/2020

useEffect optional array caveats

 Make sure the array includes all values from the component scope (such
as props and state) that change over time and that are used by the
effect. Otherwise, your code will reference stale values from previous
renders

— every value referenced inside the effect function should also appear in the
dependencies array

* If the array includes variables that always change when executing the
effect, you risk having an infinite loop

Applicazioni Web | - Web Applications | - 2019/2020

Tips about usekffect array

Do not use [] just because you are lazy: it is a common source of bugs
when some values are actually used

* If needed, other strategies (useReducer and useCallback Hooks) can
remove the need for a dependency instead of incorrectly omitting it

Do | need to specify functions as effect dependencies or not?
— hoist functions that don’t need props or state outside of your component
— pull the ones that are used only by an effect inside of that effect
— otherwise, wrap them into useCallback hook where they’re defined
— important since functions can “see” values from props and state

https://reactjs.org/docs/hooks-effect.html

Applicazioni Web | - Web Applications | - 2019/2020

https://reactjs.org/docs/hooks-effect.html

Example: data fetch

function App() {
const [data, setData] = useState({ hits: [] });
const [url, setUrl] = useState('https://hn.algolia.com/api/vl/search?query=mysearchterm');
const [isLoading, setIslLoading] = useState(false);

useEffect(() => {
const fetchData = async () => {
setIsLoading(true);
const result = await axios(url); // fetch "equivalent"”
setData(result.data);

setIsLoading(false);
};
fetchData();
}, [url]); // When setUrl is called, data will be fetched

https://www.robinwieruch.de/react-hooks-fetch-data °

Applicazioni Web | - Web Applications | - 2019/2020

https://www.robinwieruch.de/react-hooks-fetch-data

Using usekffect correctly is difficult

* How do | replicate componentDidMount with useEffect?

* How do | correctly fetch data inside useEffect? What is []?

* Do | need to specify functions as effect dependencies or not?

* Why do | sometimes get an infinite refetching loop?

* Why do | sometimes get an old state or prop value inside my effect?

* Also, React is being extended to better support the async data fetching
case (Suspense for Data Fetching etc.)

https://overreacted.io/a-complete-guide-to-useeffect/

Applicazioni Web | - Web Applications | - 2019/2020

https://overreacted.io/a-complete-guide-to-useeffect/

l Full Stack React, “Appendix C: React Hooks”
React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-rules.html

Peeking Under the Hood

THE RULES OF HOOKS

Applicazioni Web | - Web Applications | - 2019/2020 %

https://reactjs.org/docs/hooks-rules.html

Quiz

function Example(props) {

* What is the “magic” behing

useState? [hidden, setHidden] = useState(true) ;
[count, setCount] = useState(©Q) ;
® HOW can the same function [mode, setMode] = useState('view') ;

return different state variables?

 How can the values be persisted setHidden(false) ;
across function calls?

setCount(c => c+1) ;

setMode('edit') ;

Applicazioni Web | - Web Applications | - 2019/2020

Answer

e React associates to each Function Example(props) {

funCtional Component an array Of [hidden, setHidden] = useState(true) ;
[count, setCount] = useState(Q) ;

HOOk ”S|Ot5” [mode, setMode] = useState('view') ;

— Slots are stored with the function,

therefore they are persistent
setHidden(false) ;

 Each time you call a Hook, a new
“slot” is used

— The first time, it’s created

setCount(c => c+1) ;
setMode('edit') ;

— The other times, it’s reused

Applicazioni Web | - Web Applications | - 2019/2020

Corollary

° ReaCt mUSt ”knOW” Wthh function Example(props) {

functions may hOSt HOOkS [hidden, setHidden] = useState(true) ;
[count, setCount] = useState(9) ;
* Hooks must always be called in [mode, settode] = usestate("view’) ;
the same order each time a
Component renders setHidden(false) ;

setCount(c => c+1) ;

setMode('edit') ;

Applicazioni Web | - Web Applications | - 2019/2020

Hook usage rules

* Only Call Hooks at the Top Level

— Always call Hooks at the top level of your React function

— Don’t call Hooks inside loops, conditions, or nested functions
* Only Call Hooks from React Functions

— Don’t call Hooks from regular JavaScript functions

— You may call Hooks from React function components

— You may call Hooks from custom Hooks

https://reactjs.org/docs/hooks-rules.html

Applicazioni Web | - Web Applications | - 2019/2020 i

https://reactjs.org/docs/hooks-rules.html

Example

function Form() {

// 1. Use the name state variable
const [name, setName] = useState('Mary');

// 2. Use an effect for persisting the form
useEffect(function persistForm() {
localStorage.setItem('formData', name);

1)

// 3. Use the surname state variable
const [surname, setSurname] = useState('Poppins');

// 4. Use an effect for updating the title
useEffect(function updateTitle() {

document.title = name + ' ' + surname;
})s

T

/] =mmmmmeeee
// First render
/] =======-----
useState('Mary"')

// 1. Initialize the name state variable with 'Mary'
useEffect(persistForm)

// 2. Add an effect for persisting the form
useState('Poppins')

// 3. Initialize the surname state variable with 'Poppins'
useEffect(updateTitle)

// 4. Add an effect for updating the title

/] ===
// Second render
/] ===
useState('Mary"')

// 1. Read the name state variable (argument is ignored)
useEffect(persistForm)

// 2. Replace the effect for persisting the form
useState('Poppins')

// 3. Read the surname state variable (argument is ignored)

useEffect(updateTitle)
// 4. Replace the effect for updating the title

https://reactjs.org/docs/hooks-rules.html#explanation

Applicazioni Web | - Web Applications | - 2019/2020

https://reactjs.org/docs/hooks-rules.html#explanation

l Full Stack React, “Appendix C: React Hooks”
React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-custom.html

Extending the reach of Hooks-based programming patterns

CUSTOM HOOKS

Applicazioni Web | - Web Applications | - 2019/2020 %

https://reactjs.org/docs/hooks-custom.html

Reusable application logic

* Traditional React: share stateful logic between components via render
props and/or higher-order components

* Building your own Hooks lets you extract component logic into reusable
functions without forcing you to add more components to the tree
— Extract shared logic to a third function

* A custom Hook is a JavaScript function whose name starts with “use”
and that may call other Hooks

* You can decide what it takes as arguments, and what, if anything, it
should return

https://reactjs.org/docs/hooks-custom.html

Applicazioni Web | - Web Applications | - 2019/2020

https://reactjs.org/docs/hooks-custom.html

Reusable application logic

e Every time you use a custom Hook, all state and effects inside of it are
fully isolated

— Two components using the same Hook do NOT share state

 However, since Hooks are functions, we can pass information between
them

— For instance, pass the value returned by a setState as a parameter to another
Hook

https://reactjs.org/docs/hooks-custom.html

Applicazioni Web | - Web Applications | - 2019/2020

https://reactjs.org/docs/hooks-custom.html

Custom Hooks: custom fetch application logic

const useDataApi = (initialUrl, initialData) => {
const [data, setData] = useState(initialData);
const [url, setUrl] = useState(initialUrl);
const [isLoading, setIsLoading] = useState(false);
const [isError, setIsError] = useState(false);

useEffect(() => {
const fetchData = async () => {
setIsError(false);
setIsLoading(true);
try {
const result = await axios(url); // fetch "equivalent”
setData(result.data);
} catch (error) {
setIsError(true);
}
setIsLoading(false);
}s
fetchData();
3, [url]);

return [{ data, islLoading, isError }, setUrl];

};

function App() {
const [query, setQuery] = useState('mysquerystring');
const [{ data, islLoading, isError }, doFetch] = useDataApi(
"https://hn.algolia.com/api/vl/search?query=myquerystring’,
{ hits: [] },

)
return (
<Fragment>
<form
onSubmit={event => {
doFetch(
“http://hn.algolia.com/api/vl/search?query=${query}",
)
event.preventDefault();
}}
>

https://www.robinwieruch.de/react—hooks-fetch-data@

Applicazioni Web | - Web Applications | - 2019/2020

https://www.robinwieruch.de/react-hooks-fetch-data

Hooks are quickly expanding

A LOOK AT THE FUTURE

Applicazioni Web | - Web Applications | - 2019/2020

Latest additions

* Many common problems are being addressed in a more standardized
way
e Support for Hooks is entering in many libraries: Hooks for react router

* useHistory, uselLocation, useParams, useRouteMatch
* https://reacttraining.com/react-router/web/api/Hooks

* Automatically handle suspension of rendering for data fetching and

display a loading indicator: <React.Suspense fallback={<Spinner />}>

* https://reactjs.org/blog/2018/11/27/react-16-roadmap.html#treact-16x-mid-2019-the-one-
with-suspense-for-data-fetching

Applicazioni Web | - Web Applications | - 2019/2020

https://reacttraining.com/react-router/web/api/Hooks
https://reactjs.org/blog/2018/11/27/react-16-roadmap.html#react-16x-mid-2019-the-one-with-suspense-for-data-fetching

References

e 4 Examples of the useState Hook, https://daveceddia.com/usestate-
hook-examples/

 How the useContext Hook Works, https://daveceddia.com/usecontext-
hook/
* 4 \Ways to useEffect(), https://dev.to/spukas/4-ways-to-useeffect-pf6

* How the useEffect Hook Works, https://daveceddia.com/useeffect-hook-
examples/

* How to fetch data with React Hooks?,
https://www.robinwieruch.de/react-hooks-fetch-data

Applicazioni Web | - Web Applications | - 2019/2020 H

https://daveceddia.com/usestate-hook-examples/
https://daveceddia.com/usecontext-hook/
https://dev.to/spukas/4-ways-to-useeffect-pf6
https://daveceddia.com/useeffect-hook-examples/
https://www.robinwieruch.de/react-hooks-fetch-data

() DO
License

* These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
* You are free to:
— Share — copy and redistribute the material in any medium or format
— Adapt — remix, transform, and build upon the material
— The licensor cannot revoke these freedoms as long as you follow the license terms.

* Under the following terms:

— Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

— NonCommercial — You may not use the material for commercial purposes.

— ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

— No additional restrictions — You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

* https://creativecommons.org/licenses/by-nc-sa/4.0/

0O OA® ®E

Applicazioni Web | - Web Applications | - 2019/2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

