
Web Applications I – Exam # 3 (deadline 2021-09-07 at 23:59)

“Study Groups”
FINAL VERSION – Modifications are reported in “red”

Design and implement a web application to manage some study groups for University students.

The application must satisfy the following requirements.

A study group (SG) is a set of students that decide to study together in preparation to a given university

exam. Therefore, the SG is characterized by the information about the course (code, name, credits)1, by a

list of students who participate in the group, and by a schedule of (past and future) meetings of the group.

Each course may have at most one active study group, and for clarity it is associated with a different color;

this color will be used whenever the application shows information about that SG.

All the users of the system have a role of ‘student’, and each user may have extra roles (each role has also

access to all the features of the lower roles). The defined roles are:

- General Administrator. Note: there may be more than one general administrator.

- Group Administrator (for one or more study groups). Note: each SG may have more than one

group administrator

- Student (all users have this role, therefore all users may have access to its functions).

A user with role of General Administrator may:

- See the list of all study groups

- See the information of a selected Study Group: list of members, list of group administrators, list

of past and future meetings

- Create a new Study Group, by entering the data about the course

- Remove a Study Group

- Add or remove group administrators for any Study Group, by selecting them from the list of

current members of the SG

A user with role of Group Administrator may:

- See the list of Study Groups he/she may administer, and their members (this is the same

functionality of the first 2 items of the General Administrator, but restricted to the SGs

administered by the student)

- Define future meetings (date, time, duration, location) for the study group

- See the list of students for the study group

- Approve student requests for joining the study group

- Remove a student from a student group

A user with the role of Student may:

- See the list of all study groups

1 No prior information is needed about the courses

- Ask to join a study group (the request must be approved by a group administrator)

- See the list of future meetings for all joined study groups; all meetings must the shown in the

same list/table/calendar, using the color coding to identify each SG

- Sign-up for one future meeting for a joined study group or cancel a signed-up meeting. In case the

user tries to sign up for a meeting that overlaps with an already signed-up meeting, the system

will ask for further confirmation before proceeding.

Project requirements
• The application architecture and source code must be developed by adopting the best practices

in software development, in particular those relevant to single-page applications (SPA) using

React and HTTP APIs.

• The project must be implemented as a React application, that interacts with an HTTP API

implemented in Node+Express. The database must be stored in a SQLite file.

• The communication between client and server must follow the “React Development Proxy”

pattern and React must run in “development” mode.

• The root directory of the project must contain a README.md file and have two subdirectories

(client and server). The project must be started by running the two commands: “cd server;

nodemon server.js” and “cd client; npm start”. A template for the project directories

is already available in the exam repository. You may assume that nodemon is already installed

globally.

• The whole project must be submitted on GitHub, on the same repository created by GitHub

Classroom.

• The project must not include the node_modules directories. They will be re-created by running

the “npm install” command, right after “git clone”.

• The project may use popular and commonly adopted libraries (for example day.js, react-

bootstrap, etc.), if applicable and useful. Such libraries must be correctly declared in the

package.json and package-lock.json files, so that the npm install command might

install them.

• User authentication (login) and API access must be implemented with passport.js and session

cookies. No further protection mechanism is required. The user registration procedure is not

requested.

• The project database must be included in the submission, and must be pre-loaded with at least 5

users and 2 study groups, with the following mapping (the actual name of the users and groups is

free to choose).

o User 1: General Administrator, Student

o User 2: General Administrator, Group Administrator for Study Group A, Student

o User 3: Group Administrator for Study Group A, Group Administrator for Study Group B,

Student

o User 4: Group Administrator for Study Group B, Student

o User 5: Student.

Contents of the README.md file
The README.md file must contain the following information (a template is available in the project

repository). Generally, each information should take no more than 1-2 lines.

1. A list of ‘routes’ for the React application, with a short description of the purpose of each route

2. A list of the HTTP APIs offered by the server, with a short description of the parameters and o the

exchanged objects

3. A list of the database tables, with their purpose

4. A list of the main React components

5. A screenshot of the page for the list of all future meetings. This screenshot must be embedded

in the README by linking an image committed in the repository.

6. Username and password of the test users (see above).

Submission procedure (important!)
To correctly submit the project, you must:

• Be enrolled in the exam call.

• Accept the invitation on GitHub Classroom, and correctly associate your GitHub username with

your student ID.

• Push the project in the main branch of the repository created for you by GitHub Classroom. The

last commit (the one you wish to be evaluated) must be tagged with the tag final.

Note: to tag a commit, you may use (from the terminal) the following commands:

ensure the latest version is committed

git commit -m "...comment..."

git push

add the 'final' tag and push it

git tag final

git push origin --tags

Alternatively, you may insert the tag from GitHub’s web interface (follow the link 'Create a new release').

To test your submission, these are the exact commands that the teachers will use to download the project.
You may wish to test them on a clean directory:

git clone ...yourCloneURL...
cd ...yourProjectDir...
git pull origin main # just in case the default branch is not main
git checkout -b evaluation final # check out the version tagged with
'final' and create a new branch 'evaluation'
(cd client ; npm install)
(cd server ; npm install)

Ensure that all the needed packages are downloaded by the npm install commands. Be careful: if

some packages are installed globally, on your PC, they might not be listed as dependencies. Always check

it in a clean installation.

The project will be tested under Linux: be aware that Linux is case-sensitive for file names, while Windows

and macOS are not. Double-check the case of import and require() statements.

