
JavaScript Classes
and Modules
“The” language of the Web

Fulvio Corno

Luigi De Russis

Enrico Masala

Applicazioni Web I - Web Applications I - 2020/2021

2

PROTOTYPES
Modular JS programming

Applicazioni Web I - Web Applications I - 2020/2021

JavaScript: The Definitive Guide, 7th Edition
• Chapter 9. Classes

Mozilla Developer Network
• Learn web development JavaScript » Dynamic client-side

scripting » Introducing JavaScript objects
• Web technology for developers » JavaScript » JavaScript

reference » Classes

You Don't Know JS: this & Object Prototypes
• Chapter 5: Prototypes

3

A Prototype-based Language

• JavaScript is an object-based language based on prototypes, rather than
being class-based
– classes exist but they are "syntactical sugar", primarily

• Every JS object has a hidden (internal) property [[Prototype]] that
points to a second object associated with it (or it is null)
– Read with Object.getPrototypeOf(object)
– Change with Object.setPrototypeOf(object, prototype)
– Usually also accessible with .__proto__ (double underscores) – but deprecated!

Applicazioni Web I - Web Applications I - 2020/2021

4

A Prototype-based Language

• This second object is known as an object prototype
• Such object also has a [[Prototype]] property, that links to a 3rd object
– …until the [[Prototype]] is null

• Usually, only Object (top-level object) points to a null prototype

• Classes and constructor functions also have a .prototype attribute,
that points to prototype objects for objects created by them
– Do not confuse .prototype and [[Prototype]]

Applicazioni Web I - Web Applications I - 2020/2021

5

Prototype Chaining

Applicazioni Web I - Web Applications I - 2020/2021

[[Prototype]]

r
[[Prototype]]

Object.prototype

[[Prototype]]

d

[[Prototype]]

p

null

[[Prototype]]

Date.prototype

function Person(name) {
this.name = name;

}

const p = new Person('Fulvio');

const d = new Date();

const r = {min: 0, max: 30};

console.log(p); // Person {name: "Fulvio"}

console.log(d); // Thu Apr 09 2020 21:06:29
GMT+0200 (Central European Summer Time)

console.log(r); // Object {min: 0, max: 30} [[Prototype]]

Person.prototype

[[Prototype]]

Person

prototype
[[Prototype]]

Function.prototype [[Prototype]]

Function

prototype

[[Prototype]]

Object

prototype

6

Object.prototype

• Prototype chains usually end at Object.prototype
– Its [[Prototype]] is null

• Object.prototype defines many properties and methods that are
common to all JS objects
– .toString(), .valueOf(), .getPrototypeOf(), .setPrototypeOf(), .toSource(),

.isPrototypeOf(), .hasOwnProperty(), …

• All objects created by object literals (i.e., {}) have the same prototype
object: Object.prototype

Applicazioni Web I - Web Applications I - 2020/2021

7

Accessing “Inherited” Properties

• Prototypes are used in accessing object properties
– Not “real” inheritance

• Reading properties
– If the property is defined on the object, use it
– If it is not defined, JS will search on the [[Prototype]] chain

• If it is found somewhere, its value is used
• If ‘null’ is reached, then return undefined

• Writing properties
– Does not follow the prototype chain (*)
– If it is not defined on the object, a new one is created

• and may shadow a same-name property on the prototype chain

Applicazioni Web I - Web Applications I - 2020/2021

(*) not really true: read-only inherit properties and setters of
inherited properties behave differently

8

Class-based vs. Prototype-based Languages

Applicazioni Web I - Web Applications I - 2020/2021

source: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

9

Where To Define Method Functions?

In the constructor function body
• Slower to create: function is re-

declared for every new instance
• Faster to call: local property
• Memory per each instance
• May be redefined on a single instance
• Can access local variables (via closure)

As a prototype property
• Faster to create: declared only once
• Slower to call: must go through

prototype
• Uses less memory
• Always identical for all instances
• Cannot access local variables

Applicazioni Web I - Web Applications I - 2020/2021

function Person(name, age, game) {
this.play = function() {

console.log(`${this.game}`);
};

}

Person.prototype.showAge = function() {
console.log(`${this.age} years old`);

};

https://www.thecodeship.com/web-development/methods-
within-constructor-vs-prototype-in-javascript/

https://www.thecodeship.com/web-development/methods-within-constructor-vs-prototype-in-javascript/

10

CLASSES
Modular JS programming

Applicazioni Web I - Web Applications I - 2020/2021

JavaScript: The Definitive Guide, 7th Edition
Chapter 9. Classes

Mozilla Developer Network
• Learn web development JavaScript » Dynamic client-side

scripting » Introducing JavaScript objects
• Web technology for developers » JavaScript » JavaScript

reference » Classes

11

Classes

• Classes are primarily syntactical sugar over JavaScript's existing
prototype-based inheritance
– included from ES6

• They are special functions, based on the class keyword
• Two ways to define a class:
– class declaration
– class expression

• An object can be instantiated with the new keyword

Applicazioni Web I - Web Applications I - 2020/2021

12

Class Declaration

• Classic way to define a class:
– class + chosen name of the class

• Class declarations are not hoisted
– you cannot instantiate a class

before declaring it
• you should not, in any case!

class Rectangle {
constructor(height, width) {

this.height = height;
this.width = width;

}
}

Applicazioni Web I - Web Applications I - 2020/2021

13

Class Expression

• Another way to define a class, with
two variants:
– named
– unnamed

• The name given to a (named) class
expression is local to the class body
– and accessed through the class' name

property
– it is "myRectangle" and "Rectangle" for

the example
• Like class declarations, they are not

hoisted

// named
let Rectangle = class myRectangle {

constructor(height, width) {
this.height = height;
this.width = width;

}
};

// unnamed
let Rectangle = class {

constructor(height, width) {
this.height = height;
this.width = width;

}
};

Applicazioni Web I - Web Applications I - 2020/2021

14

Class Body

• The class body is always executed
in strict mode

• Each class can have only one
constructor()
– a constructor can use

the super keyword to call the
constructor of the super class

• Classes can have
– prototype methods
– static methods

class Rectangle {
constructor(height, width) {

this.height = height;
this.width = width;

}
}

Applicazioni Web I - Web Applications I - 2020/2021

15

Prototype Methods

• Several types of prototype
methods exist

• The syntax for a method is:
– methodName() {

/* method body */
}

– it adds a property named
methodName to the class and sets
the value of that property to the
specified function

– you use this with objects, too

class Rectangle {
constructor(height, width) {

this.height = height;
this.width = width;

}
// Method
calcArea() {

return this.height * this.width;
}

}
const square = new Rectangle(10, 10);
console.log(square.calcArea());

Applicazioni Web I - Web Applications I - 2020/2021

16

Prototype Methods: Getters and Setters
• JavaScript defines two methods to

create a pseudo-property
• Getters allow access to a property

that returns a dynamically
computed or internal value
– get propname()

• Setters are used to execute a
function whenever a specified
property is attempted to be
changed
– set propname()

class Rectangle {
constructor(height, width) {
this.height = height;
this.width = width;

}
// Getter
get perimeter() {
return this.calcPerimeter();

}
// Setter
set perimeter(perimeter) {
this.height = perimeter/2 - this.width;

}
// Method
calcPerimeter() {
return 2*(this.height + this.width);

}
}
const square = new Rectangle(10, 10);
square.perimeter = 100;
console.log(square.perimeter);

Applicazioni Web I - Web Applications I - 2020/2021

17

Static Methods

• The static keyword defines a
static method for a class

• Static methods are called
without instantiating their class
and cannot be called through a
class instance

• The ‘this’ keyword may not be
used inside static methods

class Rectangle {
constructor(height, width) {

this.height = height;
this.width = width;

}
// Static method
static isWider(a, b) {

return (a.width > b.width)? a: b;
}

}
const s = new Rectangle(10, 15);
const r = new Rectangle(20, 30);
console.log(Rectangle.isWider(s, r));

Applicazioni Web I - Web Applications I - 2020/2021

18

Subclassing and Super Class Calls

• The extends keyword is used to
create a class as a child of
another class
– it works with "super classes"

defined as construction functions,
too

• The super keyword is used to
call corresponding methods of
super class
– not only the constructor!
– not only from the constructor!

class Person {
constructor(first, last, age, gender, interests) {
this.name = { 'first': first, 'last' : last };
this.age = age;
this.gender = gender;
this.interests = interests;

}
sleep() {
console.log(`${this.name.first} is sleeping.`)

}
play() {
console.log(`${this.name.first} is having fun.`)

}
}

class Student extends Person {
constructor(first, last, age, gender, interests, id) {
super(first, last, age, gender, interests);
this.id = id;

}
}

Applicazioni Web I - Web Applications I - 2020/2021

19

MODULES
Modular JS programming

Applicazioni Web I - Web Applications I - 2020/2021

JavaScript: The Definitive Guide, 7th Edition
Chapter 10. Modules

Mozilla Developer Network
• Web technology for developers » JavaScript » JavaScript

Guide » JavaScript Modules

20

Modules

• Mechanisms for splitting JavaScript
programs into separate files that
can be imported when needed

• Encapsulate or hide private
implementation details and keep
the global namespace tidy so that
modules can not accidentally
modify the variables, functions and
classes defined by other modules

• 3 kinds of modules ⟹

1. Do-It-Yourself (with classes,
objects, IIFE and closures)

2. ES6 modules (using export and
import)
1. ECMA Standard
2. Supported by recent browsers
3. Supported by Node (v13+)

3. Node.js modules (using
require()) – called CommonJS
1. Based on closures
2. Never standardized by ECMA, but the

normal practice with Node

Applicazioni Web I - Web Applications I - 2020/2021

21

ES6 Modules

• A module is a JavaScript file that exports one or more values (objects,
functions or variables), using the export keyword
– each module is a piece of code that is executed once it is loaded

• Any other JavaScript module can import the functionality offered by
another module by importing it, with the import keyword

• Imports and exports must be at the top level
• Two main kinds of exports:
– named exports (several per module)
– default exports (one per module)

Applicazioni Web I - Web Applications I - 2020/2021

ES6

22

Default Export

• Modules that only export single
values
– one per module
– You are exporting a values, but not

the name of the resource

• Syntax
– export default <value>

export default str =>
str.toUpperCase();

// OTHER examples
export default {x: 5, y: 6};

export default "name";

function grades(student) {...};
export default grades;

Applicazioni Web I - Web Applications I - 2020/2021

ES6

23

Named Exports

• Modules that export one or
more values
– several per module
– Exports also the names

• Syntax
– export <value>
– export {<value>, <...>}

export const name = 'Luigi';

function grades(student) {...};
export grades;

const name = 'Luigi';
const anotherName = 'Fulvio';
export { name, anotherName }
// we can also rename them...
// export {name, anotherName as
teacher}

Applicazioni Web I - Web Applications I - 2020/2021

ES6

24

Imports

• To import something exported by another module
• Syntax
– import package from 'module-name'

• Imports are:
– hoisted
– read-only views on exports

Applicazioni Web I - Web Applications I - 2020/2021

ES6

25

Import From a Default Export
--- module2.js ---
import toUpperCase from './module1.js';
// you choose the name!

// another example
import uppercase from
'/home/app/module1.js';

// usage of the imported function
uppercase('test');

--- module1.js ---

export default str =>
str.toUpperCase();

Applicazioni Web I - Web Applications I - 2020/2021

ES6

26

Import From a Named Export
--- module2.js ---
import { name, anotherName } from
'./module1.js';

// you can rename imported values, if
you want
import { name as first, anotherName as
second} from './module1.js';

// usage
console.log(first);

--- module1.js ---

const name = 'Luigi';

const anotherName = 'Fulvio';

export { name, anotherName };

Applicazioni Web I - Web Applications I - 2020/2021

ES6

27

Other Imports Options

• You can import everything a module exports
– import * from 'module'

• You can import a few of the exports (e.g., if exports {a, b, c}):
– import {a} from 'module'

• You can import the default export alongside with any named exports:
– import default, { name } from 'module'

Applicazioni Web I - Web Applications I - 2020/2021

ES6

28

ES6 Modules In The Browser

• File extension
– Preferred: .mjs (ensure the server sets Content-Type: text/javascript)
– Also accepted: .js

• Load in HTML
– <script type="module" src="main.js"></script>
– Only load the “main” modules, others will be loaded by import statements
– Only files loaded with type="module" may use import and export
– Modules are automatically loaded in defer mode
– Note: locally loading modules (file:///) does not work due to CORS

Applicazioni Web I - Web Applications I - 2020/2021

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Modules

https://v8.dev/features/modules
ES6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://v8.dev/features/modules

29

ES6 Modules In Node.js

• Node.js started to support ES6 modules only recently
• From Node.js v14 (LTS)
– Enabled by default
– Must use a file extension of .mjs or specify "type": "module" in package.json
– https://nodejs.org/docs/latest-v14.x/api/esm.html#esm_enabling

• Beware: not all Node.js modules are provided as ES6 modules

Applicazioni Web I - Web Applications I - 2020/2021

ES6

https://nodejs.org/docs/latest-v14.x/api/esm.html

30

CommonJS Modules

• The standard module format in Node.js
• Uses the .js or .cjs extension
• Not natively supported by browsers
– Unless you use libraries such as RequireJS (https://requirejs.org/)

• It is basically a wrapper around your module code

Applicazioni Web I - Web Applications I - 2020/2021

https://nodejs.org/docs/latest-v14.x/api/modules.html

(function(exports, require, module, __filename, __dirname) {
// Module code actually lives in here
});

CJS

https://requirejs.org/
https://nodejs.org/docs/latest-v14.x/api/modules.html

31

CommonJS Imports

• To import something exported by another module
• const package = require('module-name')
– Looked up in node_modules

• const myLocalModule =
require('./path/myLocalModule');
– Looked up in a relative path from __dirname or $cwd

Applicazioni Web I - Web Applications I - 2020/2021

CJS

32

CommonJS Exports

• Assign your exported variables by creating new properties in the object
module.exports (shortcut: exports)

• Examples:
– exports.area = (r) => Math.PI * r ** 2;
– module.exports = class Square {

constructor(width) {
this.width = width;

}
area() {

return this.width ** 2;
}

};

Applicazioni Web I - Web Applications I - 2020/2021

CJS

33

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

