
Elements, JSX,
Components
The Foundations of React

Fulvio Corno
Luigi De Russis
Enrico Masala

Applicazioni Web I - Web Applications I - 2020/2021

2

Outline

• React Elements
– Creating
– JSX language

• React Components
– Defining

Applicazioni Web I - Web Applications I - 2020/2021

3

Conceptual Overview

Applicazioni Web I - Web Applications I - 2020/2021

reactDOM.render(element, targetNode) ;

React.createElement(type, props,
children)

<type props=…>children</type>
Elementreturns

renders

function X(props) {
return <ElementTree>;

}

defines

<div>

predefined

include
uses

Component

https://reactjs.org/docs/react-component.html

Element
Treereturns

composed

https://reactjs.org/docs/react-component.html

4

REACT ELEMENTS
Building block for describing web page content

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/blog/2015/12/18/react-
components-elements-and-instances.html

Full Stack React, Chapter “JSX and the Virtual
DOM”

https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

5

React Element

• An element is a plain object describing a component instance or DOM node
and its desired properties

• A ReactElement is a representation of a DOM element in the Virtual DOM.
• It contains only information about

– the component type (for example, a Button)
– its properties (for example, its color)
– any child elements inside it.

• Not an instance of a part of a page, but a description about how to construct
it.

• Elements offer no callable methods.

Applicazioni Web I - Web Applications I - 2020/2021

6

React.createElement (1/3)

• React.createElement(type, props, children)

• Type
– String: a DOM node identified by the tag name (e.g., 'div')
– React component class/function: a user-defined component

Applicazioni Web I - Web Applications I - 2020/2021

7

React.createElement (2/3)

• React.createElement(type, props, children)

• Props: a simple object {}, containing:
– DOM attributes for DOM nodes (type, src, href, alt, …)

– Arbitrary values for React components (even array- or object-valued)
• Available as this.props in the Component body

– Represented as object properties (not strings like HTML attributes)
• Exceptions (reserved words): class → className, for → htmlFor

Applicazioni Web I - Web Applications I - 2020/2021

8

React.createElement (3/3)

• React.createElement(type, props, children)

• Children:
– a ReactNode object, that may be:

• A string or number: text content of the nodes
• A ReactElement (that may contain a tree of Elements)
• An array of ReactNodes

– nested Elements to be rendered as children of the element

Applicazioni Web I - Web Applications I - 2020/2021

9

Element Objects

Element with DOM nodes
{
type: 'button',
props: {
className: 'button button-blue',
children: {
type: 'b',
props: {
children: 'OK!'

}
}

}
}

Elements with React Component

{
type: Button,
props: {
color: 'blue',
children: 'OK!'

}
}

Applicazioni Web I - Web Applications I - 2020/2021

Note: we do not create elements as plain
objects. We always use createElement or JSX

10

Rendering Element Objects

Element with DOM nodes
{
type: 'button',
props: {
className: 'button button-blue',
children: {
type: 'b',
props: {
children: 'OK!'

}
}

}
}

Elements with React Component

{
type: Button,
props: {
color: 'blue',
children: 'OK!'

}
}

Applicazioni Web I - Web Applications I - 2020/2021

<button class='button
button-blue'>

OK!

</button>

11

Rendering Element Objects

Element with DOM nodes
{
type: 'button',
props: {
className: 'button button-blue',
children: {
type: 'b',
props: {
children: 'OK!'

}
}

}
}

Elements with React Component

{
type: Button,
props: {
color: 'blue',
children: 'OK!'

}
}

Applicazioni Web I - Web Applications I - 2020/2021

! Components encapsulate element trees
(generated given their properties).

" React asks the Button component to
render itself. It will generate a tree of
elements, to replace this one.

↻ Repeat until only DOM nodes are
present.

{
type: 'button',
props: {

className: 'button
button-blue',

children: {
type: 'b',
props: {

children: 'OK!'
}

}
}

}

12

Conventions

• DOM Elements are always lowercase
– div p li img …

• React Components are always uppercase
– WarningButton LoginForm TaskList …

• The two types of elements can be mixed, nested, combined in any way
– React uses composition and not inheritance

• Element trees describe portions of the Virtual DOM

Applicazioni Web I - Web Applications I - 2020/2021

13

JSX
A humane way of describing trees of ReactElements

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/docs/jsx-in-depth.html

Full Stack React, Chapter “JSX and the Virtual
DOM”

React Handbook, Chapter “JSX”

https://reactjs.org/docs/jsx-in-depth.html

14

JSX – JavaScript Syntax Extension

• Alternative syntax for React.createElement

• XML fragments inside the JS code
– Syntax details: all tags must be </closed> or <selfclosing/>

• Transpiled by Babel into plain JS

Applicazioni Web I - Web Applications I - 2020/2021

<MyButton color="blue" shadowSize={2}>
Click Me

</MyButton>
React.createElement(
MyButton,
{color: 'blue', shadowSize: 2},
'Click Me'

) ;

Element/Component name
Props
Children / Text content

15

JSX Syntax

• May use <tag>…</tag> or <tag/> anywhere a JS expression is
syntactically valid
– Not only in Components
– May also store in Arrays/Objects
– After all, they are just ReactElements generated by React.createElement!

• May enclose in (…) for clarity

Applicazioni Web I - Web Applications I - 2020/2021

const element = <div className="main">Hello world</div>;

const element2 = (<Message text="Hello world" />);

Note: use <tag/> if the
component doesn’t have

any children

16

JSX Tag Name

• <Foo> is just React.createElement(Foo,…)
– Foo must be in scope (imported or declared)
– React must be in scope (even if it’s not visible in the code)

Applicazioni Web I - Web Applications I - 2020/2021

import React from 'react';
import CustomButton from './CustomButton';

function WarningButton() {
return <CustomButton color="red" />;

}

17

Computed Tag Name

• The JSX Tag must be a valid identifier, can’t be an expression
• If you want to select a component based on an expression, first assign it

to a capitalized variable.

Applicazioni Web I - Web Applications I - 2020/2021

function WarningButton(props) {
if(props.urgent)
return <UrgentButton />;

else
return <NormalButton />;

}

function WarningButton(props) {
const ThisButton = props.urgent ?
UrgentButton : NormalButton ;

return <ThisButton/>;
}

18

JSX Attribute Expressions

• Tag attributes are converted to props of the ReactElement
• String attributes become string-valued props
– color="blue" -> {color: 'blue'}

• Other objects may be specified as a JS expression, enclosed in {}
– shadowSize={2} -> {shadowSize: 2}
– log={true}
– color={warningLevel === 'debug' ? 'gray' : 'red'}

• Any JS expression is accepted

Applicazioni Web I - Web Applications I - 2020/2021

19

JSX Children

• The content between the tags <tag>content</tag> is passed as a special
property props.children

• Such content may be:
– A string literal
– More JSX elements (nested components)

– Any {JS expression}
– A {JS expression} returning an array of JSX elements (they are inserted as siblings)
– A JS function (may be used as a callback by the Component)
– Anything that the Component may understand (and render properly)

Applicazioni Web I - Web Applications I - 2020/2021

<MyContainer>
<MyFirstComponent />
<MySecondComponent />

</MyContainer>

<MyComponent>Hello
world!</MyComponent>

20

JSX Child Expressions

• JS expressions in {} may be used to specify element children
• One child (or an array of children) are generated by an expression

– <JSX> inside {JS} inside <JSX> inside JS. Totally Legit. !

• undefined, null or Booleans (true, false) are not rendered
– Useful for conditionally including children

Applicazioni Web I - Web Applications I - 2020/2021

const Menu = ({loggedInUser ? <UserMenu /> : <LoginLink />})

return (
Menu
{userLevel === 'admin' && renderAdminMenu()}

)

21

Boolean HTML Attributes in JSX

• In HTML some attributes do not have a value. Their simple presence
“activates” a behavior
– HTML: <option value='WA' selected>Washington</option>
– HTML: <input name='Name' disabled />

• In JSX, a Boolean value may be given
– True, for the presence of the attribute (optional in recent React versions)
– False (or nothing) for the absence of the attribute
– JSX: <option value='WA' selected={true}>Washington</option>
– JSX : <input name='Name' disabled={true} />

Applicazioni Web I - Web Applications I - 2020/2021

22

Comments in JSX

• There are no comments in JSX

• The HTML/XML comments syntax <!-- … --> does not work

• If you want to insert comments, you must do that in an embedded JS
expression (using JS syntax inside {})
{/* … */}

• Yes, it’s ugly

Applicazioni Web I - Web Applications I - 2020/2021

23

DOM Attribute Names

• When passing props to a DOM native node, some differences exist
• Attribute names are camelCase
– HTML onchangeà JSX onChange

• The style attribute accepts an object and not a string
– <div style={{color: 'white'}}>Hello World!</div>
– Object keys are CSS Properties, and are camelCase (e.g., margin-topà
marginTop)

– Object values are CSS values, represented as strings

Applicazioni Web I - Web Applications I - 2020/2021

24

JSX Spread Syntax

• Shortcut syntax for passing all properties of an object as props to a React
Component

Applicazioni Web I - Web Applications I - 2020/2021

const welcome = {msg: "Hello", recipient:
"World"} ;

<Component
msg={welcome.msg}
recipient={welcome.recipient} />

const welcome = {msg: "Hello", recipient:
"World"} ;

<Component {...welcome} />

// properties of the welcome object
// are “spread” as individual props
// with the same name

25

JSX Spread Example (Property Passthrough)

const Button = props => {
const { kind, ...other } = props;
const className = kind === "A" ? "ABtn" : "BBtn";
return <button className={className} {...other} />;

};

const App = () => {
return (

<div>
<Button kind="primary"

onClick={() => console.log("clicked!")}>
Hello World!

</Button>
</div>

);
};

Applicazioni Web I - Web Applications I - 2020/2021

• The ‘kind’ property is
“consumed” by <Button>

• All other properties
(…other) are passed to the
child <button>

• In this way, <App> can
specify the kind to Button
and all other properties to
“pass through” down the
hierarchy

26

JSX Syntax Reminders

• The HTML class attribute is called className
– Useful to add CSS classes for layout (e.g. className='d-block vh-100')

• The HTML for attribute is called htmlFor
• HTML entities (< & © ☆ etc…) may not be supported

directly in older JSX
– Use the corresponding Unicode character (< & © ☆) inside a string in JS {'☆'}
– Alternatively, use a Unicode Escape sequence: {'\u2606'}

• See: https://www.toptal.com/designers/htmlarrows/

Applicazioni Web I - Web Applications I - 2020/2021

https://www.toptal.com/designers/htmlarrows/

27

Data Properties In DOM Nodes

• React Components accept any property name you need
– <Message level='urgent' code={123}/>

• DOM nodes have a predefined set of properties
– <button value='Press me' urgency='high'>…</button>

• You may add new “custom” properties by prefixing their name with
‘data-’
– <button value='Press me' data-urgency='high'>…</button>
– Not recommended

Applicazioni Web I - Web Applications I - 2020/2021

28

REACT COMPONENTS: INTRO
Putting together the building blocks

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/docs/components-and-
props.html

https://reactjs.org/docs/react-component.html

https://reactjs.org/blog/2015/12/18/react-
components-elements-and-instances.html

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html

29

Declaring Components

Components as functions

const Button = (props) => (
React.createElement(. . .)

-or-
<Element>...</Element>

);

Components as classes

class Button extends React.Component {
render() {
// receives this.props;
return
React.createElement(. . .) ;

-or-
<Element>...</Element> ;

}
}

Applicazioni Web I - Web Applications I - 2020/2021

Components:
Take props as their input

Return the elements as their output

30

Comparison

Components as functions
• Defined as function expressions or

arrow expressions
• Receive (props) argument
• Must return a React Element tree
• The returned elements are function

of the props
• Must be a pure function (no side-

effects) and idempotent
• State and lifecycle may be managed

with the recent Hooks mechanism

Components as classes
• Must implement the render()

method
– Will return the React Element tree

(same as function)
• Props are available as instance

properties (this.props)
• May define other instance methods
• Local state may be defined
• Additional lifecycle events may be

handled with custom logic

Applicazioni Web I - Web Applications I - 2020/2021

31

Top-Down Reconciliation

1. ReactDOM.render() is called for an element E, or some state variable is
changed

2. E() or E.render() is called, with the specified props, to obtain its
representation as an Element tree ET (whose elements receive their
props, as computed by E)

3. For each non-native element in ET, repeat steps 2-3 recursively
4. Stop when only native DOM elements are present in ET
5. The resulting ET is compared with the existing ET in the V-DOM, using

an approximated O(N) algorithm (https://reactjs.org/docs/reconciliation.html)

6. The differences are propagated to the browser’s DOM

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/docs/reconciliation.html

32

Tips for Creating Components

• It is normal to create many different “small” components
• Each component is constructed by composing other components
– Components may be repeated (with different props)
– It’s up to the parent to determine the children’s props

• If a component becomes too complex, try to extract small re-usable
parts as independent components

Applicazioni Web I - Web Applications I - 2020/2021

33

Lists and Keys (1/2)

function NumberList(props) {
const numbers = props.numbers;
const listItems = numbers.map(
(number) => {number});

return ({listItems});
}

const numbers = [1, 2, 3, 4, 5];
ReactDOM.render(
<NumberList numbers={numbers} />,
document.getElementById('root')

);

• The NumberList component
generates a containing
for each of the numbers in its
props.numbers

• Whenever you construct a list of
elements, you should pass a unique
key attribute to identify each item

• Unique keys help React identify
which items have changed, are
added, or are removed. They are
used in the Reconciliation algorithm
heuristics

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/docs/lists-and-keys.html

https://reactjs.org/docs/lists-and-keys.html

34

Lists and Keys (2/2)

• Always assign to each item in the list a special ‘key’ attribute, with unique
values
– <li key={number.toString()}>{number}

• Most likely, we may reuse unique IDs from the data itself
– <li key={todo.id}>{todo.text}

• Keys must be specified when building the array of components
– Usually in the .map() call, in the ‘container’ component
– Not needed within the component of the items

• Uniqueness is only required within the same list
– Not globally on the page

• Keys are not available as props in the component

Applicazioni Web I - Web Applications I - 2020/2021

35

React Fragments

• A component should always return a tree of elements, with a single root.
• To return a list of elements, you must include them in some “container”

(such a <div>)
– This generates an “extra” DOM node, and in some contexts it might be invalid

• The special node <React.Fragment> may be used to wrap a list of
element into a single root.
– React.Fragment will not generate any node at the DOM level

• A shortcut syntax for fragments is <>…</>

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/docs/fragments.html

https://reactjs.org/docs/fragments.html

36

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2020/2021

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

