
Hooks
Supercharge function components

Fulvio Corno

Luigi De Russis

Enrico Masala

Applicazioni Web I - Web Applications I - 2020/2021

2

Outline

• Hooks: Why and What?

• Main hooks

– useState

– useEffect

– useContext

• The “Rules” of Hooks

• Custom Hooks

Applicazioni Web I - Web Applications I - 2020/2021

3

Outline

• Hooks: Why and What?

• Main hooks

– useState

– useEffect

– useContext

• The “Rules” of Hooks

• Custom Hooks

Applicazioni Web I - Web Applications I - 2020/2021

Part 1

4

HOOKS
Why? and What?

Applicazioni Web I - Web Applications I - 2020/2021

Full Stack React, “Appendix C: React Hooks”

React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-intro.html

https://reactjs.org/docs/hooks-intro.html

5

Classes vs. Functions (2nd Act)

Function component

• Simple

• Pure function (props->render)

• No state

• No side effects

• No lifecycle

• May define handler functions
(not very useful, in absence of
state)

Class component

• More complex

• ‘bind’ issues

• May have state

• Has lifecycle methods

• May define handler functions

• No side effects in render()

• Side effects in handlers and
lifecycle

Applicazioni Web I - Web Applications I - 2020/2021

6

Classes vs. Functions (2nd Act)

Function component

• Simple

• Pure function (props->render)

• No state

• No side effects

• No lifecycle

• May define handler functions
(not very useful, in absence of
state)

Class component

• More complex

• ‘bind’ issues

• May have state

• Has lifecycle methods

• May define handler functions

• No side effects in render()

• Side effects in handlers and
lifecycle

Applicazioni Web I - Web Applications I - 2020/2021

7

Hooks

• Proposed in October 2018 – https://youtu.be/dpw9EHDh2bM

– Stable since React 16.8 (February 2019)

• Additions to function components to access advanced features

– Special mechanism for overcoming some limitations of “pure” functions, in a
controlled way

– Managing state, accessing external resources, having side-effects, …

• One hook call for each requested functionality

– Hooks = special functions called by function components

Applicazioni Web I - Web Applications I - 2020/2021

https://youtu.be/dpw9EHDh2bM

8

Most popular Hooks

Hook Purpose

useState Define a state variable in the component

useEffect Define a side-effect during the component lifecycle

useContext Act as a context consumer for the current component

useReducer Alternative to useState for Redux-like architectures or complex state logic

useMemo “Memoizes” a value (stores the result of a function and recomputes it only if parameters change)

useCallback Creates a callback function whose value is memoized

useRef Access to childrens’ ref properties

useLayoutEffect Like useEffect, but runs after DOM mutations

useDebugValue Shows a value in the React Developer Tools

Applicazioni Web I - Web Applications I - 2020/2021

https://reactjs.org/docs/hooks-reference.html

https://reactjs.org/docs/hooks-reference.html

9

USESTATE HOOK
Providing function components with a state

Applicazioni Web I - Web Applications I - 2020/2021

Full Stack React, “Appendix C: React Hooks”

React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-state.html

https://reactjs.org/docs/hooks-state.html

10

useState

• Creates a new state variable
– Usually, a “simple” value

– May be an object

– Does not need to represent the whole
complete component state

• You may access
– The current value

– A function to update the state value

• Update
– With the new value

– With a callback function

Applicazioni Web I - Web Applications I - 2020/2021

https://daveceddia.com/usestate-hook-examples/

import React, { useState } from 'react';

function ShortText(props) {

const [hidden, setHidden] = useState(true);

return (

{hidden ?

`${props.text.substr(0, props.
maxLength)}...` : props.text }

{hidden ? (

 setHidden(false)}>more

) : (

 setHidden(true)}>less

)}

);

}

https://daveceddia.com/usestate-hook-examples/

11

Creating a state variable

• import{ useState } from
'react';

• const [hidden, setHidden]
= useState(true);
– Creates a new state variable

– hidden: name of the variable

– setHidden: update function

– true: default (initial) value

– Array destructuring assignment to
assign 2 values at once

• Creates a state variable of any type
– Remembered across function calls!

• The default value sets the initial
type and value

• The variable name can be used
inside the function (to affect
rendering)

• The setVariable() function will
replace the current state with the
new one
– And trigger a re-render

Applicazioni Web I - Web Applications I - 2020/2021

12

Updating the state

• With a new value

– Dependent on props and constant
values

– Will replace the current one

– Should have the same type (for
consistent rendering)

• With a function
(oldstate) => { return newstate; }

– Executed as a callback

– When new state depends on old
state

– The function return value will
replace the current state

Applicazioni Web I - Web Applications I - 2020/2021

setHidden(false) ; setSteps(oldSteps => oldSteps + 1);

13

Updating the state

• With a new value

– Dependent on props and constant
values

– Will replace the current one

– Should have the same type (for
consistent rendering)

• With a function
(oldstate) => { return newstate; }

– Executed as a callback

– When new state depends on old
state

– The function return value will
replace the current state

Applicazioni Web I - Web Applications I - 2020/2021

setHidden(false) ; setSteps(oldSteps => oldSteps + 1);

If the new state depends
on the current state, we
must provide a callback,
otherwise updates may

be lost.

❌setSteps(steps+1)❌

14

The default value

• Used during the first render of the component

– Never used in successive renders

• May be computed from the props

– But will not update if the props change

• May be a value, or a function

– The function is called only during the initial render

Applicazioni Web I - Web Applications I - 2020/2021

15

Example

function Counter(props) {
const [count, setCount] = useState(props.initialCount);
return (

<>
Count: {count}
<button onClick={() => setCount(props.initialCount)}>Reset</button>
<button onClick={() => setCount(prevCount => prevCount - 1)}>-</button>
<button onClick={() => setCount(prevCount => prevCount + 1)}>+</button>

</>
);

}

Applicazioni Web I - Web Applications I - 2020/2021

16

Multiple State Variables

• Do not use a single object for
holding many (unrelated)
properties

• Create as many state variables as
needed, they are all independent

• Component will re-render if any
state changes

• Children components will re-
render only if their props change

Applicazioni Web I - Web Applications I - 2020/2021

function Example(props) {

[hidden, setHidden] = useState(true) ;

[count, setCount] = useState(0) ;

[mode, setMode] = useState('view') ;

. . .

setHidden(false) ;

. . .

setCount(c => c+1) ;

. . .

setMode('edit') ;

. . .

}

