

# User Evaluation: Usability Testing

**Human Computer Interaction** 

Fulvio Corno, Luigi De Russis

Academic Year 2019/2020





# **Evaluation Goal (recap)**

- «Evaluation tests the usability, functionality, and acceptability of an interactive system»
  - According to the design stage (sketch, prototype, ... final)
  - $\circ~$  According to the initial goals
  - Alongside different dimensions
  - Using a range of different techniques
- Very wide (and a little bit vague) definition
- The idea is to identify and correct problems as soon as possible

# **Evaluation Approaches (recap)**

- Evaluation may take place:
  - In the laboratory
  - o In the field
- Involving users:
  - Experimental methods
  - Observational methods
  - $\circ$  Query methods
  - o Formal or semi-formal or informal

- Based on expert evaluation:
  - Analytic methods
  - Review methods
  - Model-based methods
  - Heuristics
- Automated:
  - Simulation and software measures
  - Formal evaluation with models and formulas
  - Especially for low-level issues

# Lab vs. Field

Evaluation in Lab

- Advantages
  - o specialist equipment available
  - o uninterrupted environment
- Disadvantages
  - $\circ$  lack of context
  - difficult to observe several users cooperating
- Appropriate
  - if system location is dangerous or impractical
  - for constrained single user systems to allow controlled manipulation of use

Evaluation in the Field

- Advantages
  - o natural environment
  - context retained (although observation may alter it)
  - longitudinal studies possible
- Disadvantages
  - $\circ$  distractions
  - o **noise**
- Appropriate
  - where context is crucial
  - o for longitudinal studies

#### **Involving Users: Experimental Methods**

Usability/User Testing

- "Let's find someone to use our app, so that we will get some feedback on how to improve it."
- anecdotal, mostly
- observation-driven

Controlled Experiments

- "We want to verify if users of our app perform task X faster/.../with fewer errors than our competitor's app."
- scientific
- hypothesis-driven

### **Involving Users: Experimental Methods**

Usability/User Testing

- "Let's find someone to use our app, so that we will get some feedback on how to improve it."
- anecdotal, mostly
- observation-driven



# **Usability Testing**

- Usability testing speeds up many projects and produces cost savings in a system development
- Participants should represent the intended user communities, with attention to:
  - o background in computing and experience with the task
  - motivation, education, and ability with the natural language used in the interface
- The movement towards usability testing stimulated the building of ad-hoc usability labs

# **Usability Testing Labs**

- The usability lab usually consists of two areas
   the testing room
  - $\circ$  the observation room
- The testing room is typically smaller and accommodates a small number of people



- The observation room can see into the testing room typically via a one-way mirror
  - it is larger and can hold the facilitators with ample room to bring in others, such as the developers of the product being tested

# Usability Testing: 3 Steps

#### 1. Plan

• who are your participants? what are you going to test, where, and how?

#### 2. Run

- one participant at time, multiple sessions
- collect data about the interactive system/interface

#### 3. Analyze

 extract information from the collected data, both qualitative and quantitative

# Plan

Usability Testing

- Choose who you will involve in the test
   o who are your (target) users?
- How many participants do you need?
  - o 5!
  - o <u>https://www.nngroup.com/articles/how-many-test-users/</u>
- Decide who and which roles you are going to "play"
  - $\circ$  you need at least a facilitator of the session
  - other 1-2 people may serve as note-takers and observers
  - N.B. developers, designers, creators, ... of the interactive system in evaluation <u>must not</u> serve as facilitators!

- Choose which task(s) you are going to ask your participants to perform
  - $\circ~$  tasks may be introduced with a scenario
  - o they must be concrete and with a clear goal
  - o between 5-10 tasks
- Choose any methodology you are willing to apply
  - think-aloud, cooperative evaluation, ..., none
    - more details in a few slides
  - $\circ~$  and for which tasks you are going to use it
- Define detailed success/failure criteria for each task

- Decide whether you need or want to ask any additional information
  - $\circ$  before and/or after the test
  - $\circ$  before and/or after each task
  - o before and/or after a meaningful group of tasks

- Select which equipment you will need
  - $\circ~$  also with respect to the criteria and methodology you define
- Prepare an informed consent form for participants to fill

- Decide whether to have a **debriefing** session at the end of the test
  - $\circ$  for each participant
  - observers and note-takers can ask general and specific questions, to better understand some pathways or comments
- Develop a written test protocol ("script") for consistency among sessions
  - $\circ~$  step-by step instructions with all the needed questions and forms
  - $\circ~$  often down to the exact words that the facilitator will say
  - o the appendix may contain a table with all tasks and their metrics
- Practice your script with friends or colleagues
  - $\circ~$  to fix obvious bugs so that you do not waste (yours and users') time

## **Informed Consent Form**

- Professional ethics practice is to ask all participants to read, understand, and sign a statement which says:
  - I have freely volunteered to participate in this experiment
  - I have been informed in advance what my task(s) will be and what procedures will be followed
  - I have been given the opportunity to ask questions and have had my questions answered to my satisfaction
  - I am aware that I have the right to withdraw consent and to discontinue participation at any time, without prejudice to my future treatment
  - My signature below may be taken as affirmation of all the above statements; it was given prior to my participation in this study

#### Metrics

- For success/failure criteria and additional information
- Subjective metrics, i.e., questions you ask participants:
  - o prior to the session, e.g., background info
  - after each task scenario is completed, such as ease and satisfaction questions about the task
  - overall ease of use, satisfaction, and likelihood to use/recommend at the end
- Quantitative metrics
  - what you will be measuring in your test, e.g., successful completion rates, error rates, time on task

#### Metrics

| Successful Task<br>Completion | A task is successfully completed when the participant indicates they have found the answer or completed the task goal.                                                                                    | Boolean value, 0-100<br>scale,                                                            |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Critical Errors               | Deviations at completion from the targets of the task, so<br>that the participant cannot finish the task. Participant may<br>or may not be aware that the task goal is incorrect or<br>incomplete.        | Absolute or relative<br>number                                                            |  |
| Non-Critical Errors           | Errors that are recovered by the participant and do not<br>result in the participant's ability to successfully complete<br>the task. These errors result in the task being completed<br>less efficiently. | Absolute or relative<br>number, or they may<br>affect the "successful<br>task completion" |  |
| Error-Free Rate               | The percentage of participants who complete the task without any errors.                                                                                                                                  | Relative number                                                                           |  |

#### Metrics

| Time On Task                           | The amount of time it takes the participant to complete the task.                                                                                                                             | Time         |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Subjective Measures                    | Self-reported participant ratings for satisfaction, ease of use, ease of finding information, etc.                                                                                            | Likert Scale |
| Likes, Dislikes and<br>Recommendations | What participants liked the most about the system, what<br>they liked least, any recommendations for improving it, etc.<br>Typically at the end of the session or a meaningful part of<br>it. | Free text    |

#### Reliable and validated questionnaires exist for subjective measures and open questions

# **Methodology: Think-Aloud**

- While the participant performs a task, she is asked to describe what she is doing and why, what she thinks is happening, etc.
- Advantages
  - o simple, it requires little expertise
  - o can provide useful insight
  - $\circ~$  can show how the system is actually used
- Disadvantages
  - $\circ$  subjective
  - $\circ$  selective
  - the act of describing may alter task performance (e.g., time-on-task metric)

### Methodology: Cooperative Evaluation

- Variation of the think-aloud
- The participant and the facilitator collaborate during the evaluation
   o both can ask each other questions throughout

- Additional advantages
  - $\circ~$  less constrained and easier to use
  - o user is encouraged to criticize system
  - $\circ$  clarification possible

# Equipment

- Any of these can work for an effective usability testing:
  - Laboratory with two or three connected rooms outfitted with audio-visual equipment
  - Room with portable recording equipment
  - Room with no recording equipment, as long as someone is observing the participant and taking notes
  - Remotely, with the participant in a different location (either moderated or unmoderated)

## **Equipment: Some Material**

- Paper and pencil
   cheap, limited to writing speed
- Audio
  - $\circ$  good for think-aloud
- Video
  - $\circ$   $\,$  accurate and realistic  $\,$
  - needs special equipment
  - o may be obtrusive

#### Mixed use in practice

- o audio/video transcription difficult and requires skill
- $\circ$  some automatic support tools available

- Computer logging
  - o automatic and unobtrusive
  - large amounts of data may be difficult to analyze
- Eye-tracking
  - $\circ$  to track and record eye movements

### **Post-Task Questionnaire: SEQ**

Single Ease Question (SEQ)



- Post-task questionnaires need to be short (1–3 questions) to interfere as little as possible with the flow of using the system in a session
- SEQ exemplifies this concept in a useful and simple manner
  - experimentally validated
  - $\circ\;$  reliable, valid, and sensitive
- It asks the user to rate the difficulty of the activity they just completed, from Very Easy to Very Difficult on a 7-point Likert scale

#### **Post-Test Questionnaire: SUS**

- System Usability Scale (SUS)
  - a "quick and dirt" (but trustable) usability scale
    invented by John Brooke in 1986
- It measures the perceived usability of a system
- A 10-item Likert-scale questionnaire
   o each question has 5 response options
- It produces a score from 0-100
  - o <u>not equivalent</u> to a percentage score!
- A SUS score above 68 is considered above average

| 1. Strongly Disagree               | 2.                      | З.                         | 4.             | 5. Strongly Agr                |
|------------------------------------|-------------------------|----------------------------|----------------|--------------------------------|
| $\bigcirc$                         | $\bigcirc$              | $\bigcirc$                 | $\bigcirc$     | $\bigcirc$                     |
|                                    |                         |                            |                |                                |
| 2. I found the system unneces      | sarily complex.         |                            |                |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | 5. Strongly Age                |
| 0                                  | 0                       | 0                          | 0              | 0                              |
| 3. I thought the system was e      | asy to use.             |                            |                |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | 5. Strongly Ag                 |
| 0                                  | $\bigcirc$              | $\bigcirc$                 | $\bigcirc$     | $\bigcirc$                     |
|                                    |                         |                            |                |                                |
| 4. I think that I would need the   | support of a technica   | al person to be able to us | e this system. |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | 5. Strongly Ag                 |
| $\bigcirc$                         | $\bigcirc$              | $\bigcirc$                 | $\bigcirc$     | $\bigcirc$                     |
|                                    |                         |                            |                |                                |
| 5. I found the various function    | -                       | -                          |                |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | 5. Strongly Ag                 |
| 0                                  | 0                       | 0                          | 0              | 0                              |
| 6. I thought there was too mu      | ah inconsistensy in thi | a avatam                   |                |                                |
| -                                  | 2.                      | s system.<br>3.            |                | 5 Ober 1 A                     |
| 1. Strongly Disagree               | 2.                      | 3.<br>O                    | 4.             | 5. Strongly Ag                 |
| 0                                  | 0                       | 0                          | 0              | 0                              |
| 7. I would imagine that most       | eople would learn to i  | use this system very quic  | dv             |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | 5. Strongly Ag                 |
|                                    | 0                       | 0                          |                |                                |
|                                    | $\bigcirc$              | 0                          |                | $\bigcirc$                     |
| 8. I found the system very cu      | nbersome to use.        |                            |                |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | 5. Strongly Ag                 |
| 0                                  | 0                       | 0                          | 0              | 0                              |
| -                                  | -                       | -                          | -              | -                              |
| 9. I felt very confident using the | ne system.              |                            |                |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | 5. Strongly Ag                 |
| 0                                  | 0                       | 0                          | 0              | 0                              |
|                                    |                         |                            |                |                                |
| 10. I needed to learn a lot of t   | hings before I could g  | et going with this system. |                |                                |
|                                    |                         |                            |                |                                |
| 1. Strongly Disagree               | 2.                      | 3.                         | 4.             | <ol><li>Strongly Age</li></ol> |

# **SUS: Questions**

- 1. I think that I would like to use this system frequently.
- 2. I found the system unnecessarily complex.
- 3. I thought the system was easy to use.
- 4. I think that I would need the support of a technical person to be able to use this system.
- 5. I found the various functions in this system were well integrated.
- 6. I thought there was too much inconsistency in this system.
- 7. I would imagine that most people would learn to use this system very quickly.
- 8. I found the system very cumbersome to use.
- 9. I felt very confident using the system.
- 10. I needed to learn a lot of things before I could get going with this system.

## **SUS: Scoring**

To **calculate** the SUS score of your system:

- 1. Each answer is 1-5 (X)
- 2. For every odd-numbered question, subtract 1 from the score (X-1)  $\circ$  e.g., the answer for question 1 is 4, so its score is 4-1 = 3
- 3. For every even-numbered question, subtract the score from 5 (5-X)  $\circ$  e.g., the answer for question 2 is 4, so its score is 5-4 = 1
- 4. Sum the scores from even and odd-numbered questions
- 5. Multiply the total by 2.5

### **SUS: Advantages and Disadvantages**

- Advantages
  - Score reliability has been evaluated over the decades and it is on par with more complex and costly methods
  - Free, quick, and simple
  - $\circ$  Quite used in industry
  - Applicable to a wide range of technologies, systems, and products

#### Disadvantages

- It is a subjective measure of perceived usability
  - it should not be your only method
- It gives no clues about how to improve the score
  - it is not diagnostic
- It is not possible to make systematic comparisons between two system and their functionality using SUS

#### **Post-Test Questionnaire: NASA-TLX**

- NASA Task Load indeX (NASA-TLX)
  - $\circ$  emerged in the 1980s
  - the result of NASA efforts to develop an instrument for measuring the **perceived workload** required by the complex, highly technical tasks of aerospace crew members
- Useful for studying complex products and tasks in highconsequence environments
  - o e.g., healthcare, aerospace, military, etc.

| Mental Demand   | Hov                         | w mentally demanding w                  | was the task?  |
|-----------------|-----------------------------|-----------------------------------------|----------------|
|                 |                             |                                         |                |
| Very Low        |                             | · · · · · · · · ·                       | Very Hig       |
| Physical Demand | How physica                 | lly demanding was the                   | task?          |
| Very Low        |                             |                                         | Very Hig       |
| Temporal Demand | How hurried                 | or rushed was the pace                  | e of the task? |
| Very Low        |                             |                                         | Very Hig       |
| Performance     | How success<br>you were ask | sful were you in accom<br>red to do?    | plishing wha   |
|                 |                             |                                         |                |
| Perfect         |                             |                                         | Failur         |
| Effort          |                             | d you have to work to a performance?    | accomplish     |
| Very Low        |                             |                                         | Very Hig       |
| Frustration     | How insecure<br>and annoyed | e, discouraged, irritated<br>I wereyou? | d, stressed,   |
| Very Low        |                             |                                         | Very Hig       |

### **NASA-TLX:** Questions

- 6 questions on an unlabeled 21-point scale
   o ranging from Very Low to Very High
- Each question addresses one dimension of the perceived workload:
  - o mental demand
  - o physical demand
  - $\circ$  time pressure
  - $\circ~$  perceived success with the task
  - overall effort level
  - o frustration level
- Respondents weigh each one of the questions pertaining to the six categories, to indicate which mattered most to what they were doing

#### **NASA-TLX: Score**

- A **complex** instrument to score
- NASA shares a paper and pencil version
  - $\circ$  with instructions
  - o <u>https://humansystems.arc.nasa.gov/groups/tlx/tlxpaperpencil.php</u>
- and a free iOS app to compute the score
  - o <u>https://itunes.apple.com/us/app/nasa-tlx/id1168110608</u>

## Sample Scripts and Some Tips

- Sample Usability Testing scripts, with no task described in them, mainly:
  - o <u>https://www.sensible.com/downloads/test-script.pdf</u>
  - <u>http://www.lse.ac.uk/intranet/staff/webSupport/guides/archivedWebeditor</u> <u>sHandbook/pdf/script.pdf</u>
- How to create good tasks?
  - o <u>https://www.nngroup.com/articles/task-scenarios-usability-testing/</u>

# **Run and Analyze**

**Usability Testing** 

# **Usability Testing: Run**

- Get informed consent
  - $\circ$  better in written format
- One person acts as the facilitator and rest of team are observers
   o at least one of the observers must take notes
- Tell each participant:
  - "we are testing our app, not you! Any mistakes are app's fault, not yours."
  - IMPORTANT!

# **Usability Testing: Run**

- The facilitator should always follow the script, remain neutral, not help the participants, and provide clear instructions
   tasks can be given in a written form, one at time, ... or vocally
- The facilitator must encourage participants to adopt (and explain) the chosen methodologies, at the right moment
  - $\circ~$  e.g., how the think-aloud work and for which tasks to use it
- Note-takers take notes of the participant's behavior, comments, errors and completion (success or failure) of each task
- The system is ready to measure all the defined criteria

# **Usability Testing: Analyze**

- Analyze collected data to find UI failures and ways to improve
   e.g., written notes, audio, video, usage logs, ...
- Do not forget to consider the collected metrics
   o per task and overall
- Quantitative data can be summarized in, e.g., success rates, task time, error rates, satisfaction questionnaire ratings
- Look for trends and keep a count of problems that occurred across participants
  - e.g., observations about pathways participants took, comments/recommendations, answers to open-ended questions

### References

- Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human Computer Interaction, 3rd Edition
  - Chapter 9: Evaluation Techniques
- Ben Shneiderman, Catherine Plaisant, Maxine S. Cohen, Steven M. Jacobs, and Niklas Elmqvist, Designing the User Interface: Strategies for Effective Human-Computer Interaction
  - Chapter 5: Evaluating Interface Design
- usability.gov Improving the User Experience
  - o <u>https://www.usability.gov</u>

### References

- Beyond the NPS: Measuring Perceived Usability with the SUS, NASA-TLX, and the Single Ease Question After Tasks and Usability Tests
   <u>https://www.nngroup.com/articles/measuring-perceived-usability/</u>
- John Brooke, SUS A quick and dirty usability scale, 1986
   <a href="https://hell.meiert.org/core/pdf/sus.pdf">https://hell.meiert.org/core/pdf/sus.pdf</a>
- The Pros and Cons of the System Usability Scale (SUS)
   <a href="https://research-collective.com/blog/sus/">https://research-collective.com/blog/sus/</a>

# License

- These slides are distributed under a Creative Commons license "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
- You are free to:
  - Share copy and redistribute the material in any medium or format
  - Adapt remix, transform, and build upon the material
  - The licensor cannot revoke these freedoms as long as you follow the license terms.

#### • Under the following terms:

- Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were</u> <u>made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NonCommercial** You may not use the material for <u>commercial purposes</u>.
- **ShareAlike** If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.
- **No additional restrictions** You may not apply legal terms or <u>technological measures</u> that legally restrict others from doing anything the license permits.
- https://creativecommons.org/licenses/by-nc-sa/4.0/

