
Introduction to Graphs

Tecniche di Programmazione – A.A. 2018/2019



Summary

A.A. 2018/2019Tecniche di programmazione2

 Definition: Graph

 Related Definitions

 Applications



Definition: Graph

Introduction to Graphs



Definition: Graph

A.A. 2018/2019Tecniche di programmazione4

 A graph is a collection of points and lines connecting 

some (possibly empty) subset of them.

 The points of a graph are most commonly known 

as graph vertices, but may also be called “nodes” or 

simply “points.”

 The lines connecting the vertices of a graph are most 

commonly known as graph edges, but may also be called 

“arcs” or “lines.”

http://mathworld.wolfram.com/

http://mathworld.wolfram.com/


What's in a name?

A.A. 2018/2019Tecniche di programmazione5

http://spikedmath.com/382.html



Big warning: Graph ≠ Graph ≠ Graph

Graph (plot)

(italiano: grafico)

Graph (maths)

(italiano: grafo)

A.A. 2018/2019Tecniche di programmazione6

≠

Graph (chart)

(italiano: grafico)



History

A.A. 2018/2019Tecniche di programmazione7

 The study of graphs is known as graph theory, and was 

first systematically investigated by D. König in the 1930s

 Euler’s proof about the walk across all seven bridges of 

Königsberg (1736), now known as the Königsberg bridge 

problem, is a famous precursor to graph theory.

 In fact, the study of various sorts of paths in graphs has 

many applications in real-world problems.



Königsberg Bridge Problem

A.A. 2018/2019Tecniche di programmazione8

 Can the 7 bridges the of 

the city of Königsberg

over the river Preger all 

be traversed in a single 

trip without doubling back, 

with the additional 

requirement that the trip 

ends in the same place it 

began?

Today: Kaliningrad, Russia



Königsberg Bridge Problem

A.A. 2018/2019Tecniche di programmazione9

 Can the 7 bridges the of 

the city of Königsberg

over the river Preger all 

be traversed in a single 

trip without doubling back, 

with the additional 

requirement that the trip 

ends in the same place it 

began?

Today: Kaliningrad, Russia



Unless…

A.A. 2018/2019Tecniche di programmazione10

http://spikedmath.com/541.html



Types of graphs: edge cardinality

A.A. 2018/2019Tecniche di programmazione11

 Simple graph:

 At most one edge (i.e., 
either one edge or no 
edges) may connect any 
two vertices

 Multigraph:

 Multiple edges are allowed 
between vertices

 Loops:

 Edge between a vertex and 
itself

 Pseudograph:

 Multigraph with loops

loop



Types of graphs: edge direction

A.A. 2018/2019Tecniche di programmazione12

 Undirected

 Oriented

 Edges have one direction 

(indicated by arrow)

 Directed

 Edges may have one or 

two directions

 Network

 Oriented graph with 

weighted edges



Types of graphs: labeling

A.A. 2018/2019Tecniche di programmazione13

 Labels

 None

 On Vertices

 On Edges

 Groups (=colors)

 Of Vertices

 no edge connects two 
identically colored 
vertices

 Of Edges

 adjacent edges must 
receive different colors

 Of both



A.A. 2018/2019Tecniche di programmazione14

Directed and Oriented graphs

 A Directed Graph (di-graph) G is a pair (V,E), where

 V is a (finite) set of vertices

 E is a (finite) set of edges, that identify a binary relationship 

over V

 𝐸 ⊆ 𝑉 × 𝑉



A.A. 2018/2019Tecniche di programmazione15

Example

4

1

5 6

2 3



A.A. 2018/2019Tecniche di programmazione16

Example

4

1

5 6

2 3

Loop



A.A. 2018/2019Tecniche di programmazione17

Example

4

1

5 6

2 3

V={1,2,3,4,5,6}

E={(1,2), (2,2), (2,5), 

(5,4), (4,5), (4,1), 

(2,4), (6,3)}



A.A. 2018/2019Tecniche di programmazione18

Undirected graph

 Ad Undirected Graph is still represented as a couple 

G=(V,E), but the set E is made of non-ordered pairs of 

vertices



A.A. 2018/2019Tecniche di programmazione19

Example

4

1

5 6

2 3

V={1,2,3,4,5,6}

E={{1,2}, {2,5}, {5,1}, {6,3}}



A.A. 2018/2019Tecniche di programmazione20

Example

4

1

5 6

2 3

V={1,2,3,4,5,6}

E={{1,2}, {2,5}, {5,1}, {6,3}}

Edge (1,5) adjacent 

(or incident) to 

vertices 1 and 5

Vertex 5 is adjacent 

to vertices 1 and 2

Vertex 4 is isolated



Related Definitions

Introduction to Graphs



A.A. 2018/2019Tecniche di programmazione22

Degree

 In an undirected graph,

 the degree of a vertex is the number of incident edges

 In a directed graph

 The in-degree is the number of incoming edges

 The out-degree is the number of departing edges

 The degree is the sum of in-degree and out-degree

 A vertex with degree 0 is isolated



A.A. 2018/2019Tecniche di programmazione23

Degree

4

1

5 6

2 3

2 2

20 1

1



A.A. 2018/2019Tecniche di programmazione24

Degree

4

1

5 6

2 3

In: 1

Out: 1

In: 2

Out: 2

In: 1 or 2

Out: 2 or 3

In: 2

Out: 1

In: 1

Out: 0

In: 0

Out: 1



Paths

A.A. 2018/2019Tecniche di programmazione25

 A path on a graph G=(V,E) also called a trail, is 

a sequence {v1, v2, …, vn} such that:

 v1, …, vn are vertices: vi V

 (v1, v2), (v2, v3), ..., (vn-1,vn) are graph edges: (vi-1,vi)  E

 vi are distinct (for “simple” paths).

 The length of a path is the number of edges (n-1)

 If there exist a path between vA and vB we say that vB is 

reachable from vA



A.A. 2018/2019Tecniche di programmazione26

Example

4

1

5 6

2 3

Path = { 1, 2, 5 }

Length = 2



A.A. 2018/2019Tecniche di programmazione27

Cycles

 A cycle is a path where v1 = vn

 A graph with no cycles is said acyclic



A.A. 2018/2019Tecniche di programmazione28

Example

4

1

5 6

2 3

Path = { 1, 2, 5, 1 }

Length = 3



A.A. 2018/2019Tecniche di programmazione29

Reachability (Undirected)

 An undirected graph is connected if, for every couple of 

vertices, there is a path connecting them

 The connected sub-graph of maximum size are called 

connected components

 A connected graph has exactly one connected 

component



A.A. 2018/2019Tecniche di programmazione30

Connected components

4

1

5 6

2 3

The graph is not

connected.

Connected components = 

3

{ 4 } , { 1, 2, 5 }, { 3, 6 }



A.A. 2018/2019Tecniche di programmazione31

Reachability (Directed)

 A directed graph is strongly connected if, for every

ordered pair of vertices (v, v’), there exists at least one 

path connecting v to v’



A.A. 2018/2019Tecniche di programmazione32

Example

4

1

5

2

The graph is strongly 

connected



A.A. 2018/2019Tecniche di programmazione33

Example

4

1

5

2

The graph is not strongly 

connected



Complete graph

A.A. 2018/2019Tecniche di programmazione34

 A graph is complete if, for every pair of vertices, there is 

an edge connecting them (they are adjacent)

 Symbol: Kn



A.A. 2018/2019Tecniche di programmazione35

Complete graph: edges

 In a complete graph with n vertices, the number of 

edges is

 n(n-1), if the graph is directed

 n(n-1)/2, if the graph is undirected

 If self-loops are allowed, then

 n2 for directed graphs

 n(n-1) for undirected graphs



Density

A.A. 2018/2019Tecniche di programmazione36

 The density of a graph G=(V,E) is the ratio of the number 

of edges to the total number of possible edges

𝑑 =
𝐸 𝐺

𝐸 𝐾 𝑉(𝐺)



A.A. 2018/2019Tecniche di programmazione37

Esempio

4

1

3

2

Density = 0.5

Existing: 3 edges

Total: 6 possible edges



A.A. 2018/2019Tecniche di programmazione38

Trees and Forests

 An undirected acyclic graph is called forest

 An undirected acyclic connected graph is called tree



A.A. 2018/2019Tecniche di programmazione39

Example
Tree



A.A. 2018/2019Tecniche di programmazione40

Example
Forest



A.A. 2018/2019Tecniche di programmazione41

Example This is not a tree nor a 

forest

(it contains a cycle)



Rooted trees

A.A. 2018/2019Tecniche di programmazione42

 In a tree, a special node may be singled out

 This node is called the “root” of the tree

 Any node of a tree can be the root



Tree (implicit) ordering

A.A. 2018/2019Tecniche di programmazione43

 The root node of a tree induces an ordering of the 

nodes

 The root is the “ancestor” of all other nodes/vertices

 “children” are “away from the root”

 “parents” are “towards the root”

 The root is the only node without parents

 All other nodes have exactly one parent

 The furthermost (children-of-children-of-children…) 

nodes are “leaves”



A.A. 2018/2019Tecniche di programmazione44

Example
Rooted Tree



A.A. 2018/2019Tecniche di programmazione45

Example
Rooted Tree



A.A. 2018/2019Tecniche di programmazione46

Weighted graphs

 A weighted graph is a graph in which each branch (edge) 

is given a numerical weight. 

 A weighted graph is therefore a special type of labeled 

graph in which the labels are numbers (which are usually 

taken to be positive).



Applications

Introduction to Graphs



Graph applications

A.A. 2018/2019Tecniche di programmazione48

 Graphs are everywhere

 Facebook friends (and posts, and ‘likes’)

 Football tournaments (complete subgraphs + binary tree)

 Google search index (V=page, E=link, w=pagerank)

 Web analytics (site structure, visitor paths)

 Car navigation (GPS)

 Market Matching



Market matching

A.A. 2018/2019Tecniche di programmazione49

 H = Houses (1, 2, 3, 4)

 B = Buyers (a, b, c, d)

 V = H  B

 Edges: (h, b)  E if b would like to buy h

 Problem: can all houses be sold and all 

buyers be satisfied?

 Variant: if the graph is weighted with a 

purchase offer, what is the most 

convenient solution?

 Variant: consider a ‘penalty’ for unsold 

items

This graph is called 

“bipartite”: 

H  B = 



Connecting cities

A.A. 2018/2019Tecniche di programmazione50

 We have a water reservoir

 We need to serve many cities

 Directly or indirectly

 What is the most efficient set of inter-city water 

connections?

 Also for telephony,

gas, electricity, …

We are searching for 

the “minimum 

spanning tree”



Google Analytics (Visitors Flow)

A.A. 2018/2019Tecniche di programmazione51



Customer behavior

A.A. 2018/2019Tecniche di programmazione52

User actions encoded 

as frequencies



Street navigation

A.A. 2018/2019Tecniche di programmazione53

We must find a 

“Hamiltonian cycle”

TSP: The traveling 

salesman problem



Train maps

A.A. 2018/2019Tecniche di programmazione54



Chemistry (Protein folding)

A.A. 2018/2019Tecniche di programmazione55



Facebook friends

A.A. 2018/2019Tecniche di programmazione56



A.A. 2018/2019Tecniche di programmazione57

Flow chart

BEGIN

END



Licenza d’uso

A.A. 2018/2019Tecniche di programmazione58

 Queste diapositive sono distribuite con licenza Creative Commons
“Attribuzione - Non commerciale - Condividi allo stesso modo (CC 
BY-NC-SA)”

 Sei libero:
 di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, 

rappresentare, eseguire e recitare quest'opera

 di modificare quest'opera

 Alle seguenti condizioni:
 Attribuzione — Devi attribuire la paternità dell'opera agli autori 

originali e in modo tale da non suggerire che essi avallino te o il modo in 
cui tu usi l'opera. 

 Non commerciale — Non puoi usare quest'opera per fini 
commerciali. 

 Condividi allo stesso modo — Se alteri o trasformi quest'opera, o se 
la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una 
licenza identica o equivalente a questa. 

 http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

