
On the Challenges Novice Programmers Experience in
Developing IoT Systems: A Survey

Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz

Corso Duca degli Abruzzi 24, Torino

Abstract

The co-existence of various kinds of devices, protocols, architectures, and ap-

plications make Internet of Things (IoT) systems complex to develop, even for

experienced programmers. When novice programmers are learning to imple-

ment these systems, they are required to deal with areas in which they do not

have a deep knowledge. Furthermore, besides becoming proficient in these areas

separately, they should integrate them and build a system whose components

are heterogeneous from both software and hardware perspectives.

The accurate understanding of the most challenging issues that novices face

is fundamental to envision strategies aimed at easing the development of IoT

systems. This paper focuses on identifying such issues in terms of software

development tasks that novice programmers encounter when working on IoT

systems. To this end, a survey was conducted among 40 novice developers that

worked in groups developing IoT systems during several years of a university

course. Based on their own experiences, individually and as a group, the most

challenging development tasks were identified and prioritized over a common

architecture, in terms of difficulty level and efforts. In addition, qualitative

data about the causes of these issues was collected and analyzed. Finally, the

paper offers critical insights and points out possible future work.

Keywords: Novice programmers, Internet of Things, Software engineering,

Survey

Email address: fulvio.corno@polito.it, luigi.derussis@polito.it,

juan.saenz@polito.it (Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz)

Preprint submitted to Journal of Systems and Software July 31, 2019

Luigi
Accepted for publication in the Journal of Systems and Software. DOI: 10.1016/j.jss.2019.07.101

Luigi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

1. Introduction

The Internet of Things (IoT) is built upon the idea of embedding computing

and communication capabilities into objects of common use [1]. This paradigm

gives rise to a programmable world and encourages the development of a broad

range of solutions in diverse domains, ranging from smart homes to healthcare

or logistics. As IoT systems rapidly gain prominence in several aspects of our

everyday lives [2], so does the interest of academia and industry towards the

need of supporting developers [3] and preparing different stakeholders1 [4] to

shape the future directions of IoT.

However, software engineering for the IoT poses several challenges regard-

ing infrastructure, communications, interfaces, protocols, and standards [5].

These challenges encompass handling heterogeneous devices [3], exchanging data

among them, providing localization and tracking capabilities, and enabling these

devices to make simple decisions [6]. Just from the software perspective, the

co-existence of various kinds of devices, protocols, architectures, and program-

ming languages requires knowledge of various and disparate areas. Database

design, mobile development, web development, embedded system development,

authentication mechanisms, APIs design, and application level protocols are

some examples of the areas that are typically involved in the implementation of

IoT systems.

The inherent complexity of such IoT systems raises particular concerns if

we focus on novice programmers and how to effectively and easily allow them

to design and develop these systems. When novice programmers are working

on these kind of systems, indeed, they are required to deal, conceptually and

technically, with several development tasks in different areas, without having a

deep knowledge nor previous experience in any of them. Furthermore, besides

1defined as in software engineering, i.e., people who are involved in any phases of the

software development process.

2

becoming proficient in these areas separately, they are required to orchestrate

the related tasks, and to build a system with heterogeneous components, both

from the software and hardware perspectives. For these reasons, an accurate

understanding of the most challenging issues that novices experience is funda-

mental to envision strategies to enable a smoother development of IoT systems.

To our knowledge, no previous work assessed which are these issues.

Prior work on the topic of easing the development of IoT systems has focused

on providing suitable methodologies and frameworks to professional develop-

ers [7, 8], starting from a few challenges extracted from unstructured analysis

of IoT applications, at best [3].

In an effort to understand which challenges novice developers face when

building IoT systems, in late 2017 we conducted a survey involving 40 novice

programmers coming from an engineering background. Such developers were

recruited among the former students of an undergraduate course, during which

they worked in groups to develop different IoT systems. Naturally, the systems

taken into account in this work are not large-scale systems but prototypes with

didactic purposes. In particular, in this article, we report on the following three

research questions addressed by the survey:

RQ1: How complex, in terms of time spent and difficulty, are the software

development tasks needed to build an IoT system?

RQ2: Which are the software development tasks that are perceived as the most

challenging to complete?

RQ3: Why are these tasks perceived as the most challenging?

This survey contributes to the body of research on easing the development

of IoT systems, with a focus on novice programmers. Here, “IoT systems” is

meant broadly and encompasses several application domains (e.g., healthcare,

smart home, . . .) as well as different IoT devices and technologies. For this

reason, in the survey, a generic architecture for IoT systems was used as a

reference, for providing a common vocabulary to the respondents. The survey

3

results present insights about novices’ experiences when working on IoT systems,

and reveal that the integration of those parts of an IoT system that require

over-the-network communications is one of the most challenging tasks. The

outcomes also reveal that the interaction and interfacing with third-party cloud

services is perceived as an important issue to be tackled, mainly for the lack

of proper documentation and examples. Overall, the results can inform the

design and development of adequate methodologies and improved tools to ease

the development of IoT systems in general, and for novice programmers in

particular. Furthermore, we consider that the results of this survey, obtained

from respondents belonging to the academic setting, might be partially valid as

well to software companies, in particular by considering the work by Salman et

al. [9], about how well students represent professionals in software engineering

experiments. According to this work, a major differentiating factor affecting the

results might be subject’s experience levels rather than the experiment setting

(classroom or industry).

The remainder of the paper is structured as follows. Section 2 presents the

related work and provides some background information. Section 3 describes

the survey design and research methods, while Section 4 reports the results. A

discussion of the results, implications, and limitations are presented in Section 5.

Section 6 discusses in detail the threats to validity of the survey and its results.

Finally, Section 7 concludes the article.

2. Background and Related Work

This work builds upon and lies at the intersection of research in two related

topics: (i) easing the development of IoT systems (Section 2.1) and (ii) novice

programmers in the IoT (Section 2.2). Finally, in Section 2.3 we present works

aimed at identifying the challenging issues that novice or experienced devel-

opers face in other areas of software development that are commonly involved

as enabling technologies in the implementation of IoT systems. Specifically,

we considered mobile development, APIs development, and programming, in

4

general.

2.1. Easing the Development of IoT Systems

Taivalsaari et al. [10] present a roadmap from today’s cloud-centric, data-

centric IoT systems to a world in which everyday use objects are connected and

the network’s edge is programmable. On the basis of the authors’ experience,

they highlight issues and technical challenges that the Programmable World

poses to software developers. In their opinion, the average mobile or client-side

web application developer is not well equipped to cope with the challenges of

IoT systems development. Moreover, today’s development methods, languages,

and tools are poorly suited to the emergence of millions of programmable things.

In particular, IoT developers must consider several dimensions that are unfamil-

iar to mobile and client-side web application developers, namely: multidevice

programming; the reactive, always-on nature of the system; heterogeneity and

diversity; the distributed, highly dynamic, and potentially migratory nature of

software; and the need to write software in a fault-tolerant and defensive man-

ner. Among all the statements discussed in that article, two of them are of

special relevance:

• educating software developers to realize that IoT development truly differs

from mobile and client-side web application development;

• to harness the Programmable World’s full power, we will need new soft-

ware engineering and development technologies, processes, methodologies,

and tools.

Patel and Cassou [3] tackle the challenges brought by application develop-

ment in the IoT by proposing an “high-level” development methodology that

separates IoT application development into different concerns and provides a

conceptual framework to develop an application. They recognize that software

development in the IoT present various challenges, and they list four of them: a)

lack of division of roles, b) heterogeneity (of devices), c) scale (of IoT systems),

and d) different life cycle phases. However, these challenges were formulated

5

starting from the authors’ unstructured analysis of example applications and

from related work in closely related fields like Wireless Sensor Networks and

Ubiquitous Computing [11]. The main goal of the work of Patel and Cassou is,

indeed, to make IoT application development easy for stakeholders by taking

inspiration from the MDD approach and building upon work in sensor network

macroprogramming, thus reducing development efforts.

Datta and Bonnet [8], similarly, start from their own experience (i.e., from

the IoT data cycle presented in [12]) to propose a list of the top 8 require-

ments for building an IoT application framework: interoperability, open source

framework, strong security by design, etc. Then, they introduce DataTweet, a

framework that decouples application logic from common IoT functionalities.

This allows IoT stakeholders to focus on the application logic and use open

source, standardized APIs for the latter. An example with an automotive IoT

application for an Advanced Driver Assistance System was developed with the

framework and its operational phases were highlighted in the paper. The frame-

work aimed at simplifying the development process, hiding the complexities of

programming and security mechanisms from developers, and reducing time to

market for industries.

According to Weyrich and Ebert [13], too, software engineering for the IoT

poses challenges in light of new applications, devices, and services. Moreover,

such new and diverse applications, devices, and services “pose specific challenges

for specifying software requirements and developing reliable, safe software” [13].

Weyrich and Ebert, in their paper, state that reference architectures may help

developers meet those challenges. They focus on two major architectures from

an industry standpoint: the Internet of Things - Architecture (IoT-A)2 and

Industrial Internet Reference Architecture (IIRA)3. IoT-A delivered a detailed

architecture and model from the functional and information perspectives, while

IIRA was delivered by the Industrial Internet Consortium (founded by AT&T,

2https://cordis.europa.eu/project/rcn/95713_en.html, last visited on May 24, 2019.
3https://www.iiconsortium.org/IIRA.htm, last visited on May 24, 2019.

6

https://cordis.europa.eu/project/rcn/95713_en.html
https://www.iiconsortium.org/IIRA.htm

Cisco, General Electric, IBM, and Intel) for a broad consideration and discus-

sion. Such architectures can serve as an overall and generic guideline, and not all

domain applications will require every details for real-life development. While

such reference architectures are not equal and a “standard” architecture did

not yet prevail, they form a superset of functions, information structures, and

mechanisms that could provide developers with a more complete view of the

IoT system they will implement.

In this paper, survey respondents were referred to a “generic architecture”,

which shares most of the functionalities and building blocks with the two afore-

mentioned architectures and was customized to the type of IoT projects they had

experience on. Moreover, it includes contributions coming from other IoT refer-

ence architectures, namely the Intel IoT Platform Reference Architecture [14],

the IBM IoT Reference Architecture4, and the Microsoft Azure IoT Reference

Architecture [15]. As already highlighted by Weyrich and Ebert [13], all these ar-

chitectures are not equal but they present some common features. The purpose

of using this generic architecture was to provide respondents with a common

understanding about the software components involved in an IoT system.

To our knowledge, there are no previous works assessing which are the most

challenging issues faced by IoT novice programmers according to a concrete set

of software development activities. The reported related works base their ap-

proaches on the authors’ expertise, mainly. Additionally, the majority of the

frameworks and toolkits for easing the development of IoT systems are con-

strained to a particular technological stack [7, 3, 8, 16, 17]. Instead, supported

by our proposed generic architecture, our work aims at gaining a better un-

derstanding of such issues independently from the projects, the architectural

decisions, and the technology stack. Moreover, these issues are expressed as

concrete software development tasks that belong to a specific part of the archi-

tecture.

4https://www.ibm.com/cloud/garage/architectures/iotArchitecture/

reference-architecture/, last visited on May 24, 2019.

7

https://www.ibm.com/cloud/garage/architectures/iotArchitecture/reference-architecture/
https://www.ibm.com/cloud/garage/architectures/iotArchitecture/reference-architecture/

2.2. Novice Programmers in the IoT

Literature on novice programmers in the IoT mainly consists of experience

reports from college-level courses, in which teachers and instructors recognize

the needs and challenges brought by the IoT and intervene either with new

methodologies or with dedicated frameworks. However, a systematic collection

and description of pain points and issues encountered by these novice developers

was not performed in any of these works, to our knowledge. We report, here,

four of the most representative works.

To provide its students with the systems-level skills needed to understand

and develop complete IoT systems, in 2014 Politecnico di Torino, in Italy, ini-

tiated a course named “Ambient Intelligence.” In this project-based course,

a teamwork and design-driven methodology is applied to teaching IoT system

design [4]; core student skills acquired in previous courses are exploited in a

multidisciplinary project work. The main topic of the course is the design and

the implementation of prototype Ambient Intelligence (AmI) systems [18], a

field closely related to the IoT. This entails a strong focus on the application

and on user needs. From the beginning of the course, students form three-

to four-people teams and are guided to define the requirements for a system,

and then to design and implement it. Every year, a theme is chosen for the

projects. The theme is wide enough to generate around 20 projects, but suffi-

ciently well-defined to determine whether a project fits. After teacher’s approval,

the teams develop their ideas according to the proposed design methodology,

which follows four main steps: vision and goal definition; functional and non-

functional requirements elicitation; system architecture design and component

selection; and practical realization of the prototypical system. Projects cannot

be mobile-only, software-only, or hardware-only solutions. Instead, they must

exploit different platforms and mix hardware with software and user interaction,

as typical IoT systems do. The resulting system and the “deliverables” produced

throughout the semester are the focus of the course exam, which also includes a

presentation of the team projects and an oral discussion. The authors, in their

paper, provide positive qualitative and quantitative results about the students’

8

ability to understand and design IoT systems; the usage of required languages,

frameworks, and protocols; and employed communication, collaboration, and

management skills. Moreover, they present a series of “lessons learned” that

may allow other instructors to design IoT-related courses by following a similar

methodology. Indeed, the subject of the survey that we are presenting in this

work is a subset of students of the Ambient Intelligence course.

In a similar way, Kortuem et al. [19] describe the experience of the Open

University, in the United Kingdom, delivering an online course whose purpose

was to “place the IoT at the core of the first-year computing curriculum and

to prime students from the beginning to meet the coming changes in society

and technology”. Among the concepts that the course designers identified as

fundamental for the IoT and essential for the course, they list: the merging of

the physical and digital realms; the huge increase in the number of Internet-

connected devices, objects, sensors, and actuators; and the emergence of novel

embedded-device platforms below the level of personal mobile devices. A key

goal of the course was to empower novices and to make IoT technologies acces-

sible to students with no prior programming skills. One of the most challenging

issues faced when designing and delivering the course was that most embed-

ded device technologies require an understanding of software and hardware that

cannot be expected from first-year undergraduates. To overcome this issue, an

embedded networked sensor was custom-designed for this course, as well as a

newly developed visual programming language and environment, and a cloud

infrastructure that connected the embedded networked sensors of all students

together. Authors determined, based on programming assignments and tests

with prospective users during the design stage of the course, that new users

can produce a working program in less than 20 minutes during their first ses-

sion with the custom embedded networked sensor. Furthermore, after a few

sessions, novices with no exposure to programming before the course, could

understand and modify given programs and develop new ones on their own.

Moreover, their proposed programming language and environment help novices

to quickly develop an understanding of the principles of programming simple

9

IoT applications. To gain an understanding of the common issues that novices

experience, authors conducted a preliminary analysis based on the activity of

the help forum. However, the article just provides a very general description of

the issues that concerned their proposed IoT teaching infrastructure.

Dobrilovic et al. [20] built a platform to teach communication systems, and

designed a second one [21] to be used in university curricula for teaching IoT.

The first platform was built to be used within the curricula of Information

Technology and Software Engineering, where a strong background in electron-

ics is not expected. The basis of the platform was built upon an Arduino

micro-controller and includes Zigbee expansion shields, different types of sen-

sors, and a packet sniffer specially developed for analyzing ZigBee, Bluetooth

Low Energy, and IEEE 802.15.4 traffic. Moreover, the authors described three

scenarios for the usage of this platform: a system for temperature monitoring,

an RFID/ZigBee network for tracking human resources, and a smart agriculture

and air pollution monitoring system. Starting from the architecture proposed

for each scenario, students were asked to deploy such scenarios from the begin-

ning, and develop applications on top of them. Specifically, the platform was

used by a group of three students that were able to deploy the temperature mon-

itoring scenario by adding more sensors and developing an application to gather

real-time data from an Arduino micro-controller. The second platform [21] is

proposed upon an open-source architecture for teaching IoT. It consists of a set

of low-cost open-source hardware components (IoT education kit), along with

the list of software components required to develop IoT custom applications,

and the network protocols required to establish the communication between the

layers of the proposed IoT teaching architecture. However, this platform was

not used during laboratory exercises. Instead, it was presented to students as

a part of the lectures, aiming at explaining the functionality and implementa-

tion of each layer of the architecture. Therefore, students’ feedback was not

collected in a formal questionnaire nor analyzed. The platform acceptation and

effectiveness was assessed based on the positive comments that the students

made. According to the authors, students accepted the platform with good

10

attention and interest to work with it.

2.3. Identifying programmers issues

Below we present a set of related works that relied on interviews, surveys,

and controlled studies with software developers to identify the challenging is-

sues present in mobile applications development, APIs usage, and learning to

program. These related works concern areas of software development that are

commonly involved in the implementation of IoT systems. For instance, mobile

applications are generally the mean by which end users interact and config-

ure the whole system; similarly, the integration between subsystems is typi-

cally achieved through RESTful APIs; and naturally, the implementation of

the system may require programming expertise in more than one programming

language.

Ahmad et al. [22] aimed at identifying the challenges that can undermine the

successful development of native, web, and hybrid mobile applications. First,

the authors identified the challenges through a systematic literature review, and

then, they validated the challenges through interviews with practitioners. From

the systematic literature review, nine challenges emerged, and from the inter-

views, four additional challenges were identified. In these interviews, 34 mobile

developers with 2-5 years of experience were recruited and instructed to rate

each challenge on a Likert scale. Interestingly, the distinction between the three

types of mobile applications (native, web, and hybrid), that we also consid-

ered in our work, enabled the authors to accurately identify the most critical

challenges on each type. Indeed, after comparing the development challenges

of these three types of mobile applications, the authors determined that there

are statistically significant differences among them. Concretely, fragmentation

and change management are more critical in native, the user experience is more

critical on the web, and compatibility is more severe on the web. As we will

describe later in this article, the results of our survey are consistent with the

fact that challenges vary according to the type of mobile application.

Joorabchi et al. [23] aimed at gaining an understanding of the main chal-

11

lenges developers face in practice when they build apps for different mobile

devices. To that end, they first conducted a qualitative study consisting of

interviews with 12 expert mobile developers, and then, they carried out a semi-

structured survey with 188 respondents from the mobile development commu-

nity at large. Authors identified the existence of multiple mobile platforms as

a major challenge for developing mobile apps; developers are required to learn

more languages and APIs for the various platforms and, at the same time,

remain up to date with the frequent changes of each Software Development

Kit (SDK). Additionally, due to this fragmentation, developers have to keep

checking the correctness and consistency of the app across different platforms.

Developers also indicated that testing tools and emulators (at the time in which

this study was conducted) were not able to sufficiently support important fea-

tures and scenarios such as mobility (changing network connectivity), location

services, sensors, or various gestures and inputs. This lack of tools makes anal-

ysis and testing even more challenging. Finally, concerning usability, the study

results suggested that the implementation of a reusable user interface is chal-

lenging due to the trade-offs that developers are required to achieve between

maintaining consistency and adhering to each platform’s standards. In this

respect, the results obtained from our survey suggest that the configuration

of the development environment (involving dependencies, SDKs, and run-time

platforms) is perceived as challenging in the mobile application development.

Sohan et al. [24] conducted a controlled study with 26 experienced software

engineers to understand the issues that REST API client developers face while

using an API without examples. To that end, participants were divided into

two groups and given the same set of 6 API tasks to complete. While one group

was given the official REST API documentation, the other group was given an

enhanced version of the official documentation where three usage examples were

added. From the analysis of 539 API calls, 385 from the first group and 152

from the second, authors determined that, without examples, REST API client

developers struggle with using the right data types, data formats, and required

HTTP requests headers.

12

Similarly, Robillard et al. [25] conducted a study aimed at identifying some

of the most severe obstacles faced by experienced developers, with an aver-

age of 9.8 years of professional experience, when learning new APIs. Such

study involved 440 professional developers and was structured around: (i) an

exploratory survey to broadly identify what makes APIs hard to learn; (ii) a

set of qualitative interviews to understand API learning obstacles in detail; and

(iii) follow-up survey to confirm the general findings and collect additional de-

mographic data that would help to explain API learning obstacles. The study

identified inadequate API documentation as the most severe obstacle facing de-

velopers learning a new API. For this reason, based on the qualitative analysis,

the authors elicited a set of important factors to consider when designing API

documentation. Among their various observations, they stated that small ex-

amples that nevertheless demonstrate API usage patterns involving more than

one method call will be more useful than single-call examples. Furthermore, they

determined that a central challenge when learning APIs is discovering how to

match scenarios with the API elements that support this scenario.

Uddin et al. [26] conducted two surveys about API documentation quality

involving 323 software professionals. In the first survey (exploratory), authors

aimed at collecting good and bad examples of API documentation. The respon-

dents were asked to provide examples of good or bad documentation, based on

the last development task that they completed, in which they had to consult API

documentation. In the context of this exploratory study, there was no standard

definition for an API; it could be a library, a framework component, or even

a Web API. In the exploratory survey participants were asked to: (i) describe

their last development task they had completed that required them to consult

API documentation; (ii) provide up to three examples of API documentation

that they found useful their corresponding justification; (iii) provide up to three

examples of API documentation that they did not find useful and their justifi-

cation. From the analysis of the results, ten common documentation problems

emerged, and they were categorized by the authors into content and presenta-

tion problems. Namely, content problems comprised incompleteness, ambiguity,

13

unexplained examples, obsoleteness, inconsistency, and incorrectness. Presen-

tation problems, for their part, concerned bloat, fragmentation, an excess of

structural information, and tangled information. In the second survey (valida-

tion), the authors assessed the frequency and severity of the previously identified

problems. This validation survey was conducted with a different group of partic-

ipants, and they were asked to (i) rate, for each one of problems, how frequently

they were experienced and how severe they were when completing the partici-

pants’ development tasks; and (ii) to identify the three most painful problems

to be prioritized. In this manner the authors analyzed the problems’ frequency,

their severity, and the necessity to solve them. Ambiguity and incompleteness

were identified as the most critical problems, and together with incorrectness,

they were into the top three priorities for improving documentation. The major

finding of the surveys was that the most frequent and common problems had

to do with content. In fact, all content problems were prioritized over presen-

tation problems. Additionally, the hardest problems with API documentation

were also the ones requiring the most technical expertise to solve. Completing,

clarifying, and correcting documentation require deep, authoritative knowledge

of the API implementation. Finally, the authors envisioned recommendation

systems as a mean to reduce as much of the administrative overhead of doc-

umentation writing as possible, enabling experts to focus exclusively on the

value-producing parts of the development tasks.

Concerning these last three articles, the results from our survey identify the

lack of documentation understandable by novices as one of the causes of the

complexity behind subsystems integration.

Koulouri et al. [27] assessed the effect of three factors on learning to pro-

gram, namely: choice of programming language, problem-solving training, and

the use of formative assessment. To that end, the authors conducted a study

that adopted an iterative approach and was carried out across four consecu-

tive years involving four experimental groups of CS1 students. These groups

corresponded to distinct full student cohorts and were organized in this man-

ner: a control group that was taught using Java (157 students), a group that

14

was taught using Python (195 students), a group that received formative feed-

back (193 students), and a group that received initial problem-solving training

(216 students). From the iterative process, the following outcomes emerged: (i)

the choice of programming language seems to affect student learning, a simpler

syntax could have a greater impact because it makes loops easier to use, and

the underlying concept easier to understand; (ii) introducing problem-solving

concepts before teaching more specific programming aspects has an impact on

how students learn to program, it helps students to develop an ability to both

break down complex problems into subtasks and produce the correct sequence

of actions while accelerating the consolidation of concepts, such as data and

control structures, introduced later in the course; (iii) Formative feedback may

not be necessarily and effective as expected unless students are ready to have

a proactive role in seeking and responding to feedback, it is advised that for

formative feedback to yield observable benefits on their performance, novice

programming students may need to be externally motivated and guided. The

results of our survey also suggest that developers struggle with the development

of the business logic within the various components involved in an IoT system.

3. Survey Design and Methods

Our survey was conducted to identify, based on the personal experience of

novice developers, the most complex issues that they faced when developing

an IoT system as well as the principal causes of such complexity. The survey

was advertised and conducted online, and both quantitative and qualitative

data were gathered. Hereafter we will present in detail the methodology of the

survey.

3.1. Instrument development

As already mentioned, the term “IoT systems” in the context of this study

is meant broadly and encompasses several application domains, as well as di-

verse IoT devices and technologies. For this reason, in the development of the

15

survey, it was imperative to provide the respondents with a common under-

standing about the software components involved in an IoT system. Hence, we

structured the survey around a generic IoT systems architecture proposed by

us along with a predefined set of software development tasks compatible with

such architecture.

Such generic architecture was built, firstly, by taking into account the func-

tionalities and building blocks suggested in the IoT reference architectures men-

tioned in the Related Work (Section 2.1), and secondly, by analyzing the archi-

tectures used in the development of prototype IoT systems during several years

of the Ambient Intelligence course (described in Section 2.2), whose students

were the subject of our study. In this manner, we made sure that the resulting

common architecture would be understandable and familiar to the IoT novices

participating in our study.

Consequently, five interconnected subsystems were characterized, as illus-

trated in Fig. 1. The resulting subsystems are:

Sensors monitor the End-user activities and detect changes in the environment

by measuring variables such as temperature, humidity, and occupation,

among others. They generally refer to wearable devices and environmental

sensors.

Gateways gather the data coming from the Sensors and perform computation

and reasoning tasks over it. If more computing or storage capacity is

required, the Gateways communicate with the Back-End subsystem and

delegate the most demanding tasks. Furthermore, Gateways also interact

with the actuators. They control the acting devices based on the outputs

from their own computations or based on the instructions that they receive

from the Back-End subsystem. In the projects developed by the novice IoT

developers, this subsystem typically consisted of single-board computers

such as Raspberry Pis.

Back-end groups third-party services APIs, the main application server, and

the persistence component. The functionalities provided by the applica-

16

tion server and the persistence component are typically exposed to the

Gateways subsystem through RESTful web services. Finally, third-party

service APIs are commonly used to interact with the wearable devices

belonging to the Sensors subsystem.

Actuators span actuating devices that trigger changes in the physical envi-

ronment. However, they also encompass push notifications through which

end-users are informed about the occurrence of a given event. Acting de-

vices are generally controlled by gateway devices via Bluetooth or Wi-Fi,

while push notifications are commonly generated in the Back-End subsys-

tem through the Android and iOS push notifications platforms APIs.

End-user refers to the interfaces with which the End-users are enabled to

interact with the IoT system. These interfaces typically consist of mobile

and web applications through which user preferences can be configured,

Actuators can be activated or deactivated, and Sensors can be monitored

and managed.

An important component that we decided not to represent in our generic

architecture is Security. This choice was mainly made because it was outside

the course syllabus. Therefore, survey respondents were not exposed to the

issues and possible pain points that could be generated from security-related

operations.

However, since our research questions concern the software development per-

spective of IoT systems, only the subsystems whose implementation and inte-

gration with other subsystems relied mainly on software development activi-

ties, were considered in this work. These software-intensive subsystems were:

End-user, Gateways, and Back-end. Next, these three subsystems were “de-

composed” into a list of software development tasks required for their imple-

mentation (e.g.,Develop a native end-user mobile application). These tasks, in

turn, were decomposed into very punctual, unambiguous sub-tasks (e.g.,Become

familiar with the mobile application platform-specific programming language).

17

End-user

3GWi-Fi

Wearable
devices

Sensors

Sensors

Embedded system Smartphone

Gateways

Actuators

Notification
service

Changes in
environment

PersistenceApplication
server

Third-party
service API

Back-end

invoking custom APIs

R
ea

so
ni

ng

R
ea

so
ni

ng

invoking custom APIs

surrounded by aware of

RESTful
web services

consumed through

exposed through

OAuth

Se
ns

in
g

Ac
tin

g

End-user
application

interacts
through

communicates with

communicates
with

Figure 1: Proposed IoT systems reference architecture

As Gateways and Back-end subsystems resulted in a quite large number of

tasks, these subsystems were split up in two: the first one for the subsystem

development tasks, and the second one for the subsystem integration tasks. As

a result, the survey was developed starting from the generic architecture and

the set of tasks and sub-tasks that emerge from each identified subsystem.

3.2. Initial generation of question and answer options

We defined the survey structure in line with the research questions. The

subsystems were mapped to a set of sections in the questionnaire, as shown

in Table 1. Five sections were therefore defined, namely: End-user subsystem

(Section A), Gateways subsystem development (Section B), Gateways subsys-

tem integration (Section C), Back-end subsystem development (Section D), and

Back-end subsystem integration (Section E). Since the sections belonging to the

End-user subsystem were mutually exclusive as they corresponded to the three

types of mobile applications, the survey was structured in 5 sections, with 24

tasks, and 67 sub-tasks.

18

Table 1: Survey structure

Subsystems Sections # Tasks # Sub-Tasks

End-user

Section A1: Native mobile application

9

10

Section A2: Hybrid mobile application 10

Section A3: Web responsive mobile application 9

Gateways
Section B: Gateways development 5 10

Section C: Gateways integration 3 10

Back-end
Section D: Back-end development 4 10

Section E: Back-end integration 3 8

Total 24 67

As not all respondents participated in the development of every subsystem

of the IoT system, the research questions were addressed at the subsystem level

of detail. In fact, inside each subsection, they were instructed to skip the rating

of the sub-tasks in which they did not participate. Therefore, for each section

of the questionnaire, respondents were asked to:

• Rate the complexity of each sub-task in which they participated accord-

ing to their difficulty level and the time spent completing them. Two

Likert scales ranging from 1 to 5 were included in the questionnaire for

each sub-task, as shown in Figure 2. This rating aims at answering the

RQ1: How complex, in terms of time spent and difficulty, are the software

development tasks needed to build an IoT system?

• Rank the sub-tasks of the concerned subsystem identifying the ones per-

ceived as the most challenging to complete. In this case, such sub-tasks

had to be ranked as the first, second and third most difficult task in the

subsystem. In Figure 2, the field at the left of the sub-tasks is intended

to the rank the three most challenging sub-tasks. This ranking aims at

answering the RQ2: Which are the software development tasks that are

perceived as the most challenging to complete?

• Assess the perception of the respondents about the reasons behind the

19

ranking choice on each subsystem. This perception is captured through

an open question, where besides their justification, respondents could also

mention any other task that they found complex to achieve, even if it was

not in the set of suggested sub-tasks. The qualitative perceptions of

the participants are intended to answer the RQ3: Why are these tasks

perceived as the most challenging?

RQ1 (rate) was measured at the sub-task level, while RQ2 (rank) and RQ3

(perception) were measured at each section level.

Rank Section A: End-user Difficulty Time spent

Develop a native end-user mobile application

 Become familiar with the mobile application platform-specific programming
language 1 2 3 4 5 1 2 3 4 5

 Configure the development environment 1 2 3 4 5 1 2 3 4 5

 Develop the models' classes 1 2 3 4 5 1 2 3 4 5

 Develop the controllers' classes 1 2 3 4 5 1 2 3 4 5

 Develop the user interface (views) 1 2 3 4 5 1 2 3 4 5

 Connect the push notification module with the platform notification service 1 2 3 4 5 1 2 3 4 5

 Handle the notifications received in the end-user's smartphone 1 2 3 4 5 1 2 3 4 5

Figure 2: Example of a task decomposed in sub-tasks

3.3. Initial pilot survey

To validate the pertinence and completeness of the resulting survey, a pre-

liminary study [28] was conducted and documented with a small group of par-

ticipants (6). These participants belonged to the 2016 cohort of the previously

mentioned Ambient Intelligence course. In this version of the course 18 projects

related to Health and Well-Being were developed. The participants chosen for

the pilot survey were the members of two groups whose final projects obtained

outstanding grades, and whose implementation relied mainly on software devel-

opment activities. The first group was composed by 4 students and the second

group was composed by 3 students. However, one of the members of the sec-

ond group was an international student who returned to her home university,

therefore a total of 6 students were involved in the preliminary study.

20

The pilot was conducted by inviting the respondents to 2 interview sessions,

with one group invited per each session. Each session consisted of three phases:

an introduction, the questionnaire, and a discussion. The sessions were con-

ducted by two researchers, and were held in English. In the introduction, one

researcher briefly explained the objective of the study, the structure of the ques-

tionnaire and the general organization of the session. It was clarified that the

questionnaire had to be filled individually from the personal point of view (each

participant should respond to those activities in which they were directly in-

volved, only), while the following discussion would involve their evaluation as a

group.

The questionnaire was filled out on paper, and as described before, partici-

pants were asked to rate the sub-tasks according to their difficulty level and the

time spent completing them, rank the three most difficult tasks per each section

of the questionnaire, and justify their ranking choice with an open question,

where they could also mention any other tasks that were not listed but resulted

complex to achieve.

After all participants completed the questionnaire, a final discussion was held

to identify, as a group, the most complex and painful tasks. The respondents

were free to discuss among themselves, and with the researchers. The com-

pletion of the questionnaire took each participant, in average, approximately

30 minutes, while the later discussion about the most painful issues and the

feedback about the completeness of the questionnaire took around 20 minutes.

Besides providing some preliminary insights about the most painful issues

when developing IoT systems, this study provided valuable feedback regard-

ing the pertinence and completeness of the proposed generic architecture, the

identified subsystems, and their tasks and sub-tasks. The participants of this

preliminary study did not suggest any modification to the architecture nor the

addition of sub-tasks that the questionnaire could have overlooked.

21

3.4. Survey instrument

The structure of the questionnaire in terms of sections and their tasks is

shown in Table 2, which also reports the number of sub-tasks defined per each

task.

3.5. Administration and population

The survey was managed through the Lime Survey [29] platform, and invita-

tions were sent by email to former students of the three cohorts of the Ambient

Intelligence course between the years 2014 and 2016. Since some former students

of the course were in Erasmus, when possible, the invitations were sent to both

institutional and personal email addresses. Moreover, with the aim of motivat-

ing the participation, the draw of a Sonos wireless speaker among the people

who completed the survey was announced. Recipients were free to participate

if they chose and their ratings and opinions would be anonymous. Due to the

draw of the wireless speaker, the survey had an explicit closing date (April 23,

2017).

The first invitation was sent on February 8, 2017, and two reminders were

sent before the closing date. The number of potential recipients of the survey

invitation was 150: 45 of them partially completed the survey (they were not

taken into account in the survey results), while 40 completed the whole survey.

Therefore, the estimated response rate was approximately 27% (40/150). The

platform enabled participants to save partially finished surveys.

To make sure that there was not a substantial difference concerning the

characteristics of the survey respondents and the non-respondents former stu-

dents of the course (response bias), we decided to compare their final grades

obtained at the end of the course. Table 3 presents the main statistics about

the grades obtained by former students of the course that did not participate

(Non-respondents) in the survey and those who did participate (Respondents)5.

5The survey was anonymous, and we could not associate the responses to each student.

However, we had the list of students who responded.

22

Table 2: Subsystems and tasks in the questionnaire

Section A: End-user subsystem # Sub-Tasks

Develop a native end-user mobile application 7

Develop a hybrid end-user mobile application 8

Develop a web responsive end-user mobile application 6

Develop the integration between the end-user application and the gateways

[computation node, smartphone]

2

Deploy the end-user mobile application into the smartphone 1

Section B: Gateways subsystem (Development)

Configure the development environment 2

Develop the business logic of the gateway device [computation node, smart-

phone] application

2

Configure the OAuth authentication between the gateway device [computation

node, smartphone] and third-party services APIs

3

Develop the module for generating notifications to be displayed on the end-user

application

2

Deploy the software into the gateway devices [computation node, smartphone] 1

Section C: Gateways subsystem (Integration)

Develop the integration between the gateway device [computation node, smart-

phone] and the sensors [wearable devices, static sensors]

4

Develop the integration between the gateway device [computation node, smart-

phone] and the back-end [third-party service API, application server, persis-

tence] by consuming these last ones’ custom APIs

4

Develop the integration between the gateway device and the actuators respon-

sible for changes in environment

2

Section D: Back-end subsystem (Development)

Configure the development environment 2

Design and develop the persistence component 3

Develop the business logic on the application server 2

Develop the RESTful web services 3

Section E: Back-end subsystem (Integration)

Develop the integration between the application server and third-party services 2

Configure OAuth between the application server and third-party services 3

Develop the integration between the application server and the persistence

component

3

As it may be observed, the grades do not differ greatly between the two groups.

Another possible bias factor would be an item bias: some respondents might

have rushed through several sections of the questionnaire intentionally to quickly

23

Table 3: Comparison between the grades of the former students and the respondents

Non-respondents Respondents

minimum 18.0 19.0

maximum 31.0 31.0

mean 26.3 28.3

SD 4.1 3.1

n 110 40

complete the survey and participate in the draw. However, as shown in Table 4,

the time spent completing the online survey was generally consistent with the

number of subsystems they worked on. On average, respondents who worked

on one subsystem took 16 minutes, two subsystems 21 minutes, and three sub-

systems 25 minutes. Moreover, these data show that 16% of the respondents

were involved in the development all the subsystems.

Table 4: Time spent completing the online survey by number of subsystems on which they

answered questions

1 Subsystem 2 Subsystems 3 Subsystems

minimum 0:04:53 0:08:33 0:19:29

maximum 0:42:26 0:44:44 0:46:31

mean 0:16:37 0:21:27 0:25:56

respondents percentage 50.0% 34.0% 16.0%

As the respondents were asked to answer the survey just for the sub-tasks

that they completed in the development of their IoT systems, Table 5 shows

the percentage of completion for each subsystem. The subsystem with a higher

average percentage of completeness was the End-user subsystem (79%), followed

by the Back-end (75%), and finally the Gateways (60%).

24

Table 5: Percentage of sub-tasks rated on each subsystem

End-user Gateways Back end

minimum 44.4% 15.0% 37.5%

maximum 100% 100% 100.0%

mean 78.9% 59.7% 75.2%

respondents percentage 63.2% 50.0% 50.0%

4. Results

This section presents the results from the survey according to the proposed

research questions. These results are described as detailed as possible in terms of

particular software development tasks. Concretely, Section 4.1 provides a brief

description of the demographics of the respondents of the survey, while Section

4.2 introduces the outcomes that emerged from the survey and their connec-

tion to the research questions. Section 4.3 concerns the first research question,

Section 4.4 regards the second research question, and Section 4.5 addresses the

third research question.

4.1. Demographics

At the beginning of the survey questionnaire, several questions were included

to characterize the demographics of the respondents. As shown in Table 6, a

vast majority of the respondents were male (87.5%), and their ages were mainly

from 22 to 24 years old (80%), which is consistent with the student population.

Furthermore, a marked majority of respondents belonged to Computer Engi-

neering (70%), followed by those that belonged to Electronic Engineering (20%

of them), as illustrated in Figure 3.

At the beginning of the course, students were asked to complete an online

questionnaire concerning their prior knowledge on a set of technical skills and

programming languages. Specifically, they graded such skills and programming

languages on a 5-point Likert scale. This grading is reported in Table 7, where

the ratings in the Likert scale are categorized into low (1 and 2), medium (3),

25

and high (4 and 5). It is observed that the prior knowledge declared by the

students of the Ambient Intelligence course was low in most of the topics and

programming languages. The only exceptions were programming (in general)

and the C language, since nearly all students had taken a basic programming

course. Similarly, as briefly mentioned in the Introduction, we consider that

the respondents of our survey are, to some extent, representative of novice pro-

fessionals in the context of IoT systems development. We support this idea

based on the observation made by Salman et al. [9], according to which “in an

academic setting, we can find students who already possess industrial experi-

ence or in a field experiment, we can face novice professionals with regard to a

particular technology”.

Table 6: Age and gender of the respondents

22-24 25-27 >28 Total

Female 5 1 - 5

Male 27 4 3 33

Total 32 5 3 40

Table 7: Technical skills of the AmI students before taking the course

Topic Low Average High

Programming (in general) 16.97% 44.85% 38.18%

Web architectures 69.09% 19.39% 11.52%

Mobile development 86.06% 9.09% 4.85%

Source control management 90.91% 4.85% 4.24%

Software requirements specification 75.15% 15.76% 9.09%

Python 92.12% 2.42% 5.45%

HTML/CSS 81.21% 9.09% 9.70%

JavaScript 89.09% 5.45% 5.45%

Java 79.39% 9.09% 11.52%

C 12.12% 27.27% 60.61%

26

Figure 3: Bachelor degree of the survey respondents when attending the course

0 5 10 15 20 25 30

Computing Engineering

Electronic Engineering

Other Engineering

28

8

4

4.2. Research questions

Three types of outcomes emerged for each of the subsystems in the survey:

1. The rating of each sub-task complexity in terms of its difficulty level and

completion time (i.e., to answer RQ1).

2. The set of sub-tasks that were ranked as the most challenging (i.e., to

answer RQ2).

3. The perception of each respondent about the most challenging tasks (i.e.,

to answer RQ3).

In this section, the three questions will be addressed for each subsystem.

Since the rating of the difficulty level and time spent on each sub-task was cap-

tured on an ordinal scale, the results from this outcome were analyzed through

the median and the correlation between these variables. As shown in Tables 8

to 10, almost all the development sub-tasks yielded positive correlations between

the difficulty level and the time spent. Next, for analyzing the ranking of the

most complex sub-tasks, they were prioritized according to the number of times

they were included in the ranking and their position. To do this prioritization, a

weighted sum was calculated for each sub-task and the three sub-tasks with the

highest weights are presented below. Lastly, the perception about the most

complex tasks was analyzed through the comments of the survey respondents,

and three main categories were identified: learning curve issues, integration be-

tween subsystems issues, and configuration and deployment issues. At the end

of this section, we will report, for each of these categories, some of the most rep-

27

resentative comments made by the respondents when they were asked to justify

their ranking choice.

4.3. RQ1. Rating of the sub-tasks

Tables 8 to 10 present the development sub-tasks of each subsystem, along

with two box plot diagrams illustrating the ratings for the difficulty level and

time spent. Moreover, next to these diagrams we report the correlation between

the ratings. When the p-value was less than 0.05, the correlation is flagged

with a *, meaning that the correlation of the concerned sub-task is statistically

significant.

4.3.1. Section A: End-user subsystem

End-user native mobile application (Section A1) The sub-task of Be-

coming familiar with the mobile application platform-specific programming lan-

guage (eu-nat-1), was rated as difficult and time-spending. Concretely, these

programming languages are: Java, when developing Android applications, or

Swift, when developing iOS applications. On the contrary, although also sta-

tistically significant, the sub-tasks of Configuring the development environment

(eu-nat-2) and Packaging the application into a compatible format that might be

deployed on the smartphone (eu-nat-10) were rated as not difficult and not time-

spending, plausibly because the “official” IDEs provide the developers enough

commands and visual interfaces to do so intuitively. Developing the user inter-

face (eu-nat-5) yields a negative correlation, suggesting that it was considered

to be more difficult than time spending. Probably because once the first views

are developed, the learning curve is overtaken and the process becomes quicker.

However, the magnitude (-0.19) and statistical significance of this correlation

are weak. Developing the controller’s classes (eu-nat4) was rated as a very dif-

ficult sub-task, and significantly time spending, with a high correlation (0.88)

even if not statistically significant, according to the p-value. Effectively, the

development of the controllers is critical since they are the bound between the

models and the views, and they manage the interaction with external data

28

Section A1: End-user native mobile application Difficulty Time spent Corr.

Develop a native end-user mobile application

eu-nat-1 Become familiar with the mobile application platform-specific programming
language

0.91*

eu-nat-2 Configure the development environment 0.93*

eu-nat-3 Develop the models' classes 0.59

eu-nat-4 Develop the controllers' classes 0.88

eu-nat-5 Develop the user interface (views) -0.19

eu-nat-6 Connect the push notification module with the platform notification service 0.77

eu-nat-7 Handle the notifications received in the end-user's smartphone 0.77

Develop the integration between the end-user application and the gateways

eu-nat-8
Implement the HTTP asynchronous requests through the RESTful web services
exposed by the gateways

0.82

eu-nat-9 Parse and handle the JSON- or XML-formatted response 0.41

Deploy the end-user mobile application into the smartphone

eu-nat-10
Package the application into a compatible format that might be deployed on the
smartphone

0.94*

Section A2: End-user hybrid mobile application Difficulty Time spent Corr.

Develop a hybrid end-user mobile application

eu-hyb-1 Become familiar with the scripting programming languages -0.08

eu-hyb-2 Configure the development environment 0.92*

eu-hyb-3
Incorporate into the project all the required plugins on their corresponding
versions

0.61

eu-hyb-4 Develop the controllers 0.32

eu-hyb-5 Develop the user interface through HTML and CSS files (views) 0.40

eu-hyb-6 Develop the user interaction through JavaScript files (views) 0.80

eu-hyb-7 Connect the push notification module with the platform notification service -

eu-hyb-8 Handle the notifications received in the end-user's smartphone -

Develop the integration between the end-user application and the gateways

eu-hyb-8 Implement the HTTP asynchronous requests through the RESTful web services
exposed by the gateways

0.43

eu-hyb-9 Parse and handle the JSON- or XML-formatted response 0.82

Deploy the end-user mobile application into the smartphone

eu-hyb-10 Package the application into a compatible format that might be deployed on the
smartphone

0.94

Section A3: End-user web responsive mobile application Difficulty Time spent Corr.

Develop a web responsive end-user mobile application

eu-web-1 Become familiar with the scripting programming languages 0.69*

eu-web-2 Configure the development environment 0.87*

eu-web-3 Develop the controllers 0.70*

eu-web-4 Develop the user interface through HTML and CSS files (views) 0.18

eu-web-5 Develop the user interaction through JavaScript files (views) 0.47

eu-web-6 Deploy the application on the web 1.00

Develop the integration between the end-user application and the gateways

eu-web-7
Implement the HTTP asynchronous requests through the RESTful web services
exposed by the gateways

0.88*

eu-web-8 Parse and handle the JSON- or XML-formatted response 0.75*

Deploy the end-user mobile application into the smartphone

eu-web-9
Package the application into a compatible format that might be deployed on the
smartphone

0.96*

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Table 8: End-user ratings

29

sources. Connecting the push notification module with the platform notification

service (eu-nat-6) was also rated as a complex sub-task. This can be due to

the parametrization and the functions that have to be properly implemented to

generate and manage the notifications.

End-user hybrid mobile application (Section A2) Configuring the de-

velopment environment (eu-hyb-2) was the only sub-task whose correlation be-

tween difficulty and time spent was statistically significant. Notwithstanding,

the ratings of this task were scattered in both variables, most of them ranging

from 1 to 4. Therefore, based on these numbers, it is not possible to determine

accurately if this sub-task was perceived as complex or not. Unlike the develop-

ment of the End-user native application, Becoming familiar with the scripting

programming languages (eu-hyb-1) is not perceived as complex, and has a very

weak, and negative, correlation between difficulty and time spent (-0.08). These

results would suggest that an advantage for novice programmers of hybrid mo-

bile applications over the native ones, is the use of scripting languages, which are

more common and widespread. However, Developing the user interface through

HTML and CSS files (eu-hyb-5) appears to be more difficult and time spending

in hybrid mobile applications than in the native applications. Since the native

applications IDEs are targeted at a specific mobile operating system, they pro-

vide a better consistency between the design, development, and deployment of

the user interface. Finally, in the sub-task of Connecting the push notification

module with the platform service (eu-hyb-7), all the respondents rated the time

spent with 2, as well as in Handle the notifications received in the end-user’s

smartphone (eu-hyb-8), where all the respondents rated the difficulty as 3. In

both cases the low number of responses did not allow the correlation to be

computed.

End-user responsive mobile application (Section A3) The set of sub-

tasks with a significant correlation were rated as not particularly complex.

Parsing and handling the JSON- or XML-formatted responses (eu-web-8) had

exactly the same ratings in the difficulty and time spent variables as well as

Packaging the application into a compatible format that might be deployed on

30

the smartphone (eu-web-9). The difficulty when Developing the controllers (eu-

web-3) had the same value (3) for the first quartile, the median, and the third

quartile. Implement the HTTP asynchronous requests through the RESTful web

services exposed by the gateways (eu-web-7) was rated as considerably difficult

and time spending (median = 3, in both variables). This sub-task might be

more complex in this kind of mobile applications due to the lack of libraries or

frameworks to manage the connection and the HTTP requests and responses,

such as the ones in the native or hybrid mobile applications IDEs. Naturally,

the Deployment of the application on the web (eu-web-6) was rated as easy and

quick. The Development of the user interface through HTML and CSS files

(eu-web-4) was rated as easy but considerably time spending. Probably all the

programmers were familiar with HTML and CSS, or at least could easily be-

come skilled in them. However, the absence of a tool to graphically compose

and link the views could affect negatively the time spent.

4.3.2. Sections B and C: Gateways subsystem

Gateways development (Section B) in almost all the sub-tasks the cor-

relation between difficulty and time spent was statistically significant. Config-

uring the development environment (gw-dev-1 and gw-dev-2) was rated as easy

and quick. The ratings for Developing the business logic of the gateway device

application (gw-dev-3 and gw-dev-4) were mainly scattered from 2 to 4, meaning

that while not extremely difficult, neither they were extremely easy. In the con-

text of the IoT course projects, the concept of ‘business logic’ basically refers to

the way in which the data gathered from the sensors will be used to accomplish

the overall system functional requirements. Setting up the parameters needed

to establish the connection with third-party services APIs using OAuth (gw-dev-

5) was rated as very time spending while moderately difficult. In fact, even if

this sub-task doesn’t require a significant programming effort, it requires a good

conceptual and technical understanding of OAuth and the registration of the ap-

plication in the third-party service platform. Likewise, Developing the methods

or functions required to establish the connection with third-party services APIs

31

Section B: Gateways development Difficulty Time spent Corr.

Configure the development environment

gw-dev-1 Install and deploy the operating system 0.64*

gw-dev-2
Install the libraries and dependencies needed to develop on the gateway's
controller 0.74*

Develop the business logic of the gateway device application

gw-dev-3 Define and implement the required set of models 0.82*

gw-dev-4 Develop the methods or functions where the business logic is implemented 0.80*

Configure the OAuth authentication between the gateway device and third-party
services APIs

gw-dev-5 Set up the parameters needed to establish the connection 0.43

gw-dev-6 Install the required set of libraries 0.88*

gw-dev-7 Develop the methods or functions required to establish the connection 0.82*

Develop the module for generating notifications to be displayed on the end-user
application

gw-dev-8
Set up the parameters needed to establish the connection with the platform
notification service

0.52

gw-dev-9 Generate the notifications by invoking the platform notification service APIs 0.80*

Deploy the software into the gateway devices

gw-dev-10
Package the application into a compatible format that might be deployed on the
gateway

0.87*

Section C: Gateways integration Difficulty Time spent Corr.

Develop the integration between the gateway device and the sensors

gw-int-1
Develop the methods or functions required to establish the Wi-Fi connection
with the sensors

0.85*

gw-int-2 Develop the methods or functions required to establish the Bluetooth
connection with the sensors

0.90*

gw-int-3 Develop the methods or functions required to obtain data from the sensors 0.78*

gw-int-4
Develop a component for receiving real-time streaming data coming from the
sensors

0.90*

Develop the integration between the gateway device and the back-end by
consuming these last ones’ custom APIs

gw-int-5
Implement the HTTP asynchronous requests through the RESTful web services
exposed by third-party services APIs

0.17

gw-int-6 Parse and handle the JSON- or XML-formatted response obtained from third-
party services APIs

0.78*

gw-int-7
Implement the HTTP asynchronous requests through the RESTful web services
exposed by the application server

0.28

gw-int-8
Parse and handle the JSON- or XML-formatted response obtained from the
application server

0.08

Develop the integration between the gateway device and the actuators responsible
for changes in environment

gw-int-9 Develop the methods or functions required to establish the connection 0.88*

gw-int-10 Develop the methods or functions required to handle the actuators behaviour 0.54

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Table 9: Gateways ratings

using OAuth (gw-dev-7), was rated as a difficult and time spending sub-task.

It demands to consult several documentation sources and devote a significant

amount of time ensuring a successful connection. Generating the notifications

by invoking the platform notification service APIs (gw-dev-9) had exactly the

same ratings in the difficulty and time spent variables.

32

Gateways integration (Section C) the correlation of all the sub-tasks

regarding the Integration between the gateway device and the sensors (gw-int-1 to

gw-int-4) were statistically significant. In particular, Developing the methods or

functions required to establish the Bluetooth connection with the sensors (gw-int-

2) was rated as easy and quick, and the Development of the methods or functions

to obtain data from the sensors (gw-int-3) was rated as time-spending. The

difficulty in the Development of a component for receiving real-time streaming

data coming from the sensors (gw-int-4) had the first quartile, the median, and

the third quartile rated as 3. The rest of the sub-tasks in this subsection did

not exhibit a clear trend concerning their low or high complexity.

4.3.3. Sections D and E: Back-end subsystem

Back-end development (Section D) The sub-tasks corresponding to the

Configuration of the development environment (be-dev-1 and be-dev-2), and the

Design and development of the persistence component (be-dev-3 and be-dev-4)

were not rated as complex. On the contrary, the Development of the business

logic on the application server was rated as difficult and time spending. Espe-

cially the Development of the methods or functions where the business logic is

implemented (be-dev-7). Naturally, the complexity of this sub-task has to do

with the fact that each group had to program its business logic methods from

scratch, and without the guidance of previous implementations. The sub-tasks

concerning the Development of the RESTful web services (be-dev-8 to be-dev-10)

were not rated as difficult but as moderately time spending.

Back-end integration (Section E) Parsing and handling the JSON- or

XML-formatted response (be-int-2) was rated as easy and quick. When config-

uring the OAuth authentication between the application server and third-party

services, the Installation of the required set of libraries (be-int-4) was rated as

easy and quick. Moreover, the set up of the parameters (be-int-3) and the de-

velopment of the methods or functions to establish the connection (be-int-5), do

not exhibit a clear trend about how complex they resulted to the respondents.

Lastly, all the sub-tasks concerning the Development of the integration between

33

Section D: Back-end development Difficulty Time spent Corr.

Configure the development environment

be-dev-1 Install and deploy the application server 0.68*

be-dev-2
Install the libraries and dependencies needed for the application server
development 0.89*

Design and develop the persistence component

be-dev-3 Design the entity-relationship model or the corresponding data model, if NoSQL
is used

0.80*

be-dev-4 Install the database server 0.92*

be-dev-5 Deploy the database with the corresponding data model 0.49

Develop the business logic on the application server

be-dev-6 Define the required set of models 0.88*

be-dev-7 Develop the methods or functions where the business logic is implemented 0.86*

Develop the RESTful web services

be-dev-8 Define the HTTP methods along with their URI and associated operation 0.75*

be-dev-9 Set up the framework required to implement the RESTful web services 0.66*

be-dev-10 Implement the mapping between the business logic models and the exposed
RESTful web services

0.41

Section E: Back-end integration Difficulty Time spent Corr.

Develop the integration between the application server and third-party services

be-int-1
Implement the HTTP asynchronous requests through the RESTful web services
exposed by third-party service APIs 0.81*

be-int-2 Parse and handle the JSON- or XML-formatted response 0.74*

Configure the OAuth authentication between the application server and third-party
services

be-int-3 Set up the parameters needed to establish the connection 0.99*

be-int-4 Install the required set of libraries 0.77*

be-int-5 Develop the methods or functions required to establish the connection 0.90*

Develop the integration between the application server and the persistence
component

be-int-6 Set up the connection between the application server and the database 0.80*

be-int-7 Implement the queries to be performed over the database 0.70*

be-int-8 Parse and handle the database response 0.82*

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Table 10: Back-end ratings

the application server and the persistence component (be-int-6, be-int-7, and

be-int-8) were rated as easy and not time spending.

4.3.4. Summary of RQ1

RQ1: How complex, in terms of time spent and difficulty, are the

software development tasks needed to build an IoT system?

Almost all the sub-tasks hold a positive correlation between the two variables

34

that we used to measure the complexity. It means that all the sub-tasks rated as

significantly difficult were also rated as considerably time spending. By compar-

ing the ratings of the sub-tasks and the correlation between their two variables,

we could preliminarily identify for each subsystem those sub-tasks that stand

out as complex. Hereafter we present a summary of the main findings for each

subsection of the questionnaire.

In the End-user native mobile application, becoming familiar with the

platform-specific programming language (eu-nat-1), and developing the applica-

tion controllers (eu-nat-4) were rated as difficult and time-spending sub-tasks.

In the End-user hybrid mobile application, the rating of the sub-tasks and

their statistical significance did not allow to identify a clear tendency about

the correlation between the difficulty and the time spent. In the End-user re-

sponsive mobile application, the implementation of the HTTP asynchronous

requests through the RESTful web services exposed by the gateways (eu-web-7)

was rated as considerably difficult and time spending. On the contrary, the

development of the user interface through HTML and CSS files (eu-web-4) was

rated as easy but time spending. In the Gateways development, imple-

menting the methods or functions to establish the connection with third-party

services APIs using OAuth (gw-dev-7), was rated as difficult and time-spending.

In the Gateways integration, the correlation of the sub-tasks concerning the

integration between the gateways and the sensors (gw-int-1 to gw-int-4) were

statistically significant. While the methods or functions to establish the con-

nection with the sensors was rated as easy and quick (gw-int-2), the methods or

functions to gather information from those sensors were rated as time-spending

(gw-int-3). In the Back-end development the implementation of the business

logic on the application server was rated as difficult and time spending (be-dev-

7). On the contrary, the sub-tasks concerning the development of the RESTful

web services were not rated as difficult but as moderately time spending (be-

dev-8 to be-dev-10). In the Back-end integration subsystem no sub-task was

35

rated as particularly difficult or time spending.

4.4. RQ2. Ranking of the sub-tasks

Table 11 presents, for each subsystem, the three sub-tasks that the respon-

dents placed in the first position of the ranking they were asked to do in the sur-

vey, as the most complex ones. In the End-user subsystem, these sub-tasks are

listed depending on the kind of End-user mobile application developed whether

it was a native, hybrid or web-responsive mobile application. Next to each sub-

task we show a triplet of numbers representing the number of times in which the

concerned sub-task was ranked in the first, second, and third place, respectively.

As expected, this ranking matches with the rating of the sub-tasks in terms of

difficulty level and time spent.

According to the sub-tasks ranked as the most complex, it can be observed

that despite the kind of End-user mobile application implemented (native, hy-

brid or web-responsive), the development of the user interface was perceived as

complex (eu-nat-5, eu-hyb-5, eu-web-4). This observation is somehow surpris-

ing, particularly concerning native mobile applications, where we may presume

that the IDE would ease the design of the user interface views and their con-

nection with the business logic of the application. Moreover, the configuration

of the development environment was perceived as complex both in the native

mobile applications as well as in the web responsive mobile application (eu-

nat-2, eu-web-2). Once again, it is striking that even with specialized IDEs as

the ones used to develop native mobile applications, the configuration of the

development environment was ranked as complex. Finally, concerning the End-

user subsystem, the development of the controllers (which can be understood

as the binding between the views and the business logic), was ranked as one of

the most complex sub-task both in the hybrid mobile applications and in the

web-responsive mobile applications.

In the Gateways development and the Gateways integration subsystems

there is a clear correspondence between the development of the methods or func-

36

tions to establish the connection between the gateway device and the third party

services APIs using OAuth, in the Gateways development (gw-dev-7), and the

parsing and handling the JSON or XML-formatted response obtained from the

third-party services APIs, in the Gateways integration (gw-int-6).

Similarly, in the Back-end subsystem, there is a clear mapping between the

deployment of the database with the corresponding data model, in the Back-end

development (be-dev-5), and the parsing and handling of the database response

in the application server, in the Back-end integration (be-int-8).

However, between Gateways and Back-end subsystems, there are also some

coincidences. For instance, the development of the functions or methods where

the business logic is implemented was ranked in both subsystems as a complex

sub-task (gw-dev-4 and be-dev-7). Furthermore, there is another correspon-

dence between the implementation of the HTTP asynchronous request through

the RESTful web services exposed by the application server, in the Gateways inte-

gration (gw-int-7), and the implementation of the mapping between the business

logic models and the exposed RESTful web services, in the Back-end development

(be-dev-10).

4.4.1. Summary of RQ2

RQ2: Which are the software development tasks that are perceived

as the most complex to complete?

The development tasks that are perceived as the most complex regard as-

pects that are common to various subsystems, as might be the development

of user interfaces, the configuration of the development environments, and the

development of the business logic. Some other aspects, however, are split across

various subsystems. Such is the case of the integration between the Gateway de-

vices and the third-party services, the implementation and integration with the

persistence component, and the implementation, exposure, and consumption of

custom RESTful web services.

Due to the above, besides determining the most complex sub-tasks on each

37

Table 11: Sub-tasks ranked as the most complex

Section A1: End-user native mobile application

eu-nat-1 Become familiar with the mobile application platform-specific program-

ming language

3-3-0

eu-nat-2 Configure the development environment 1-1-1

eu-nat-5 Develop the user interface (views) 1-0-2

Section A2: End-user hybrid mobile application

eu-hyb-7 Connect the push notification module with the platform notification service 2-0-0

eu-hyb-5 Develop the user interface through HTML and CSS files (views) 1-1-0

eu-hyb-4 Develop the controllers 1-0-0

Section A3: End-user web responsive mobile application

eu-web-2 Configure the development environment 3-0-0

eu-web-3 Develop the controllers 2-1-1

eu-web-4 Develop the user interface through HTML and CSS files (views) 2-0-1

Section B: Gateways development

gw-dev-4 Develop the methods or functions where the business logic is implemented 5-2-1

gw-dev-7 Develop the methods or functions to establish the connection (between the

gateway device and third-party services APIs using OAuth)

5-0-1

gw-dev-5 Set up the OAuth parameters needed to establish the connection with the

third-party services APIs

2-3-1

Section C: Gateways integration

gw-int-3 Develop the methods or functions required to obtain data from the sensors 3-2-1

gw-int-6 Parse and handle the JSON- or XML-formatted response obtained from

the third-party services APIs

3-1-1

gw-int-7 Implement the HTTP asynchronous requests through the RESTful web

services exposed by the application server

2-3-1

Section D: Back-end development

be-dev-5 Deploy the database with the corresponding data model 2-4-1

be-dev-7 Develop the methods or functions where the business logic of the applica-

tion server is implemented

2-3-1

be-dev-10 Implement the mapping between the business logic models and the exposed

RESTful web services

2-2-2

Section E: Back-end integration

be-int-1 Implement the HTTP asynchronous requests through the RESTful web

services exposed by third-party service APIs

9-0-0

be-int-8 Parse and handle the database response (in the application server) 2-3-3

be-int-3 From the server application, set up the OAuth parameters needed to es-

tablish the connection with the third-party services

4-0-3

38

subsystem, the ranking section of the survey helped to identify, firstly, the set

of sub-tasks that are common to various subsystems, and secondly, a set of sub-

tasks that complement each other in the development of some portions of the

IoT system.

In the first set of sub-tasks there are:

• Sub-tasks concerning the development of the user interfaces were ranked

as complex regardless the kind of End-User mobile application (eu-nat-5,

eu-hyb-5, and eu-web-4).

• The configuration of the development environment was also ranked as

complex both in the native mobile application and in the web responsive

mobile application.

• The development of the controllers (binding between models and views

in the MVC architecture) was ranked as complex in the hybrid mobile

applications and in the web responsive mobile applications.

In the second category there are:

• The development of the methods or functions to establish the connection

between the Gateway device and the third party service APIs using OAuth

(gw-dev-7), and the parsing and handling of the response obtained from

the third party service APIs, in the Gateways Integration subsystem (gw-

int-6).

• The design, implementation, and integration of the persistence compo-

nent, which spans across the Back-end development (be-dev-5) and the

Back-end integration (be-int-8).

• The design, implementation and later consumption of the custom REST-

ful web services. Their implementation and mapping between the business

logic and the exposed RESTful web services belong to the Back-end De-

39

velopment subsystem (be-dev-10), while the consumption of those services

belongs to the Gateways Integration (gw-int-7).

4.5. RQ3. Qualitative perception of the survey respondents

We now present and analyze the comments given by the respondents when

asked about why did they perceive certain sub-tasks as the most challenging

ones. Such comments were analyzed through inductive thematic analysis, that

involved two researchers and followed the six-phase framework proposed by

Braun and Clarke’s [30]. The first step consisted in becoming familiar with

the comments of the respondents and was carried out by the two researchers.

Secondly, the first researcher categorized the material at the sentence level and

generated the initial codes. The second researcher, for his part, discussed and

validated them. This discussion was in person and using hard copies of the

respondents’ comments. Since an open code approach was used, there were

not preset codes. Instead, the codes were being developed and modified while

advancing through the coding process. Thirdly, the first researcher identified

produced a set of themes with their corresponding codes; initially, 18 open codes

were used, later grouped into three broader themes. Further on, in the fourth

step, the second researcher validated and approved the proposed themes under

the rationale that they were supported by the previously generated codes. In

this manner, in the fifth step, the themes were jointly analyzed, and in the last

step, the researchers’ observations around these themes were documented. The

thematic analysis revealed three key themes, based also on the commonalities

of the comments across all the subsystems: Learning curve issues, Integration

between subsystems issues, and Configuration and deployment issues.

4.5.1. Learning curve issues

In the End-user subsystem, comments about the Learning curve issues,

highlight that most of the survey respondents were developing for the first time

a mobile application. Those groups that decided to implement a native End-

40

user mobile application, faced the challenge of learning a new programming

language and becoming familiar with the concerned development environment.

Respondents expressed: “I knew almost nothing on Android when I started

developing the app, I had to learn everything from scratch”, “Becoming familiar

with a new programming language in a very little time is very difficult”. “I spent

a lot of time researching how to complete everything and make it work”.

In the Gateways subsystem development, Learning curve issues con-

cerned how to handle the data gathered from the End-user mobile application,

as well as from the sensing devices: “We worked with GPS, so we had to do

some research about playing with coordinates and GPS accuracy.” Moreover,

since the communication with End-user and Back-end subsystems is typically

achieved through RESTful web services, the understanding of these services

(both the ones that had to be implemented as well as the external ones that

had to be consumed), was perceived as challenging by some respondents: “I had

never heard about APIs, and there were tasks in which it was required to work

with them.”

Similarly, the Gateways subsystem integration required the knowledge

about how to adequately implement the web services so that, through HTTP

requests coming from the other subsystems, the gateway is directed to perform

some given business logic function. “I was a very beginner with no background in

‘Implement the HTTP asynchronous requests through the RESTful web services

exposed by the third-party services APIs’ and ‘Parse and handle the JSON- or

XML-formatted response obtained from the third-party services APIs’.” Like-

wise, managing the integration through other transmission protocols was per-

ceived as challenging due to the lack of adequate documentation: “Bluetooth

documentation for Android wasn’t clear, and there were not enough examples of

how to use it”, “There was no documentation for some smart home sensors, or

sometimes we found very poorly written documentation”.

Once again, as occurred in the Gateways subsystem, in the Back-end sub-

system development, the RESTful web services concept was also challenging

to apprehend. “It took me some time mostly because of the scarce knowledge of

41

Flask, but as I figured things out it all got easier (‘Set up the framework required

to implement the RESTful web services’ and ‘Develop the methods or functions

where the business logic is implemented’).” In the same way respondents ex-

pressed: “I had to study a lot of things to understand how to implement my

logical function in HTTP”, “It took some research to understand how to imple-

ment it (‘Define the HTTP methods along with their URI and associated oper-

ation’).” Finally, among the Back-end subsystem integration, the learning

curve issues concerned how to deal with the data exchanged with the back-end:

“Needed to learn how to ‘Parse and handle the database response’ properly.”

4.5.2. Integration between subsystems issues

As noted before, across the three types of mobile applications, the integration

between the End-user subsystem and the Gateways subsystem was among

the most challenging issues. Respondents commented “Interaction between the

server and the mobile app was quite difficult for us because we decided to manage

it in a ‘custom’ way.” The integration between the End-user subsystem and

the third-party services was particularly challenging: “We had several problems

interfacing the Fitbit APIs with our application”.

The most painful integration among the Gateways subsystem develop-

ment, according to the respondent’s comments, regards the OAuth 2.0 authenti-

cation. In fact, this authentication protocol consists of a flow, with a set of roles

(resource owner, resource server, client, and authorization server) interacting

across various steps (authorization request, access token request, and protected

resource request), and exchanging several resources (authorization grant, access

token, refresh token, redirect URI). Respondents commented “OAuth 2.0 au-

thentication, to gain access to the Fitbit API, was a mess. There were hardly

any tutorials for the method, and it took a lot of time to figure it out” and

“Authentication is a nightmare.” Moreover, concerning the integration that did

not required OAuth, the main reason given by the respondents was the lack of

experience: “I had no experience on how to connect the devices.”

When working on the Gateways subsystem integration, dealing with

42

the data coming from the back-end resulted challenging, particularly when re-

ceiving streaming data coming in real-time: “While receiving generic data was

easily done, when we stepped up to the real-time stream we spent an enormous

amount of time just to figure out how to access it and then how to handle it.”

“Establishing the connection between front and Back-end is not an easy task!

I’d never worked with JSON.”

The integration issues in the Back-end subsystem development regarded

the communication with the Persistence component, the Gateways, and even

the Sensing devices, for those groups that decided to communicate the Sensors

subsystem directly with the Back-end subsystem. Finding out how to handle

incoming data into the business logic that is implemented in the Application

server is perceived as the most challenging issue. Concerning the managing of

Persistence component, respondents commented: “It took a lot of time to de-

velop an error-free function in Python to manage the SQLite database.” When

dealing with the data gathered directly from the sensors, respondents com-

mented: “It was hard to make things run together (i.e. retrieve information

from the sensors without stopping the web-application).” Finally, when incor-

porating the incoming data into the business logic of the Application server,

respondents commented: “It was necessary to implement a set of models that

were compatible with hardware (Arduino) and the web and application server

(Flask). The link between these two architectures was not so easy to design.”

According to the respondents comments, the most challenging issues in the

Back-end subsystem integration had to do with integrating third-party

APIs: “I spent a lot of time because it was the first time I dealt with it (‘Im-

plement the HTTP asynchronous requests through the RESTful web services

exposed by the third-party service APIs’). I had to change my implementation

several times due to the limitations of the commercial third-party APIs. Like-

wise, it took a while to understand how to use them to achieve our goals. In the

final implementation, we used three external APIs’.” As already pointed out in

the Gateways subsystem issues, third-party APIs have their own specific pro-

tocols, formats, and authentication mechanisms. These specifics imply a higher

43

level of complexity for the novices when integrating third-party services in their

projects.

4.5.3. Configuration and deployment issues

Configuration and deployment issues concerning the End-user subsystem

were mainly related to the development environment and the dependencies re-

quired to develop the End-user mobile applications. “The development environ-

ment used throughout the course (Eclipse) is quite simple to use but requires a

lot of effort to configure it for a given development project.” Depending whether

the mobile application was native, hybrid, or web-responsive, diverse develop-

ment environments and their dependencies had to be configured: “I found very

hard to configure PhoneGap and Apache Cordova in Windows.” As part of the

Gateways subsystem development, various libraries have to be installed in

order to ease and manage the communication with the End-user and the Back-

end subsystem: “The libraries were always difficult to install, and also very time

consuming” and “In my personal experience, the OAuth authentication was very

difficult to set up for its first use.”

In the Back-end subsystem development the sub-tasks aimed at design-

ing, setting up and deploying the Persistence module, were perceived as time-

consuming: “While not difficult per se, these were the tasks that took most of

my time. For example, deploying the database, designing the Entity-relationship

model, and setting up the hardware.” Moreover, fixing technical details that may

affect the development of the Back-end had some minor impact in the develop-

ment of the Back-end: “It takes a while to deploy the system because of some port

conflicts derived from some issues in the configuration of the development en-

vironment.” Once implementing the Back-end subsystem integration, and

specifically its integration with third-party services, OAuth requires configuring

the Back-end from which the authenticated request will be made. Commonly it

involves installing libraries, setting up various parameters, and configuring the

third-party APIs in their corresponding web platforms. “I had a lot of problems,

and spent a lot of time, properly configuring the OAuth authentication between

44

our application server and the one of Jawbone, it needed a lot of permissions.”

4.5.4. Summary of RQ3

RQ3: Why are these tasks perceived as the most complex?

By analyzing the comments of the respondents concerning their reasons be-

hind the ranking of the sub-tasks, there might be identified, on the one hand, the

lack of adequate documentation that might be understandable by the novices.

And on the other hand, the lack of knowledge and expertise required to deal

with several protocols, formats, authentication mechanisms, and real-time data.

Concretely, their feedback could be categorized into: Learning curve issues, In-

tegration between subsystems issues, or Configuration and deployment issues.

Hereinafter we provide a brief summary of the most common perceptions on

each category

Learning curve issues: In the End-user subsystem, these kinds of issues

concerned the fact that most of the survey respondents were developing

for the first time a mobile application. They faced the challenge of learning

a new programming language and becoming familiar with the concerned

IDE. When developing the Gateways, respondents struggled with under-

standing conceptually the RESTful web services before dealing with their

implementation and consumption later (when implementing the Gate-

ways integration subsystem). Furthermore, also concerning Gateways

integration, achieving the integration with the End-user subsystem using

other transmission protocols such as Bluetooth was perceived challenging

due to the lack of adequate documentation. In the Back-end subsystem,

the RESTful web service concept was mentioned once again as difficult

to apprehend, particularly regarding the mapping between business logic

methods and the web service endpoints.

Integration between subsystems issues: Without a doubt, the issues re-

garding the integration between subsystems were the most common ac-

45

cording to the respondent’s comments. The integration with both, self-

implemented software components as well as with third-party services

APIs, was perceived as complex. In the End-user subsystem, the integra-

tion with third-party services was particularly challenging. In the Gate-

ways subsystem development, dealing with the OAuth authentication was

perceived as complex given the flow, roles, and steps of this authentication

mechanism. According to respondent’s comments, the inherent complex-

ity of OAuth was worsened by the lack of documentation understandable

by novices. In the Gateways integration, dealing with streaming data

coming in real-time from the Back-end was perceived both as extremely

difficult and time-spending. In the Back-end, the main issues have to do

with appropriately handling the data coming from the other subsystems

into the application server business logic. As pointed out in the Gateways

subsystem issues, dealing with the particular protocols, formats, and au-

thentication mechanisms of each third-party service APIs was perceived

as very challenging when implementing the Back-end integration.

Configuration and deployment issues: In the End-user subsystem, these

kinds of issues concerned the proper configuration of the development en-

vironment and the dependencies required to implement the mobile appli-

cations. When developing the Gateways subsystem, the installation, and

configuration of several libraries to manage the communication with the

other subsystems were perceived as difficult and time spending, especially

when the communication involved OAuth. In the Back-end development,

the design, setting up, and deployment of the persistence component (typi-

cally a relational database) was perceived as time-consuming. Also, the de-

ployment of the Back-end itself (application server) was not trivial. Same

as the Gateways integration, in the Back-end integration, dealing with

third-party services requires several configuration and parametrizations so

that authenticated request could be sent to the third-party services APIs.

46

Finally, from a system-level view, the sub-tasks that were perceived as the

most challenging, are concerned with the integration between the subsystems.

Whether classified as Learning curve issues, Integration between subsystems is-

sues, or Configuration and deployment issues, many of the comments stressed

the complexity inherent to the integration of heterogeneous subsystems. On the

other hand, the Learning curve issues may be explained basically with the lack

of knowledge of the respondents, or with the lack of adequate documentation

that might be understandable for them.

5. Discussion

The rating of the sub-tasks provided a first perspective about how difficult

did IoT novice developers find the implementation of concrete development sub-

tasks. These sub-tasks were presented as detailed as possible without linking

them to a specific programming language, framework or run-time environment.

Differentiating difficulty level from time spent helped to understand which sub-

tasks are complex just from the practical point of view (such as the time spend-

ing sub-tasks) and which other sub-tasks are also complex from the conceptual

and learning curve perspective (such as the difficult and also time spending

sub-tasks).

Later, aiming at clearly identifying the most complex sub-tasks, it was nec-

essary to ask respondents to prioritize the three most complex sub-tasks they

faced on each subsystem. In this way, from the ranking of the sub-tasks, we

got a perspective of the most painful development issues. From this perspec-

tive, there were identified complex sub-tasks common to many subsystems, and

complex sub-tasks that complement between them across various subsystems.

Thirdly, to understand the previous ranking, it was essential to capture

qualitatively the perceptions of the respondents about the choice they made and

their reasons behind that selection. These impressions led to the identification

and categorization of the sources of complexity present in the implementation

of particular software development tasks in the context of an IoT system. These

47

categories were: Learning curve issues, Integration between subsystems issues,

and Configuration and deployment issues.

By combining rating, the ranking and the perceptions, some specific pro-

gramming areas were recurrently mentioned as particularly hard and painful.

In particular, the integration of different subsystems, that require over-the-

network communication protocols, and their debugging resulted considerably

difficult, due to the diversity of client and server environments and the diffi-

culty of tracing the remote calls. This was worsened by the fact that some

third-party services are proprietary, give little visibility over their behavior, and

each of them requires to follow different approaches and programming patterns.

The integration with third-party services is particularly painful, whether it is

the push notification service or the APIs that require OAuth authentication.

From the ranking of the sub-tasks, the development of the user interfaces in

the End-user subsystem was among the most complex sub-tasks regardless of

the kind of mobile application implemented (native, hybrid or web-responsive).

This fact is somehow surprising if considering that the development of native

mobile applications relies on specialized IDEs that in theory would ease the im-

plementation of the views. These IDEs typically provide drag and drop features

through which placing the user interaction components on the views should be

easy enough. Notwithstanding, based on the comments of the respondents in

the last section of the survey, we think that the difficulties experienced by the

novice IoT developers concern the binding between the business logic and the

events generated at the user interface of the mobile application. In fact, the

development of the controllers was also ranked as a complex sub-task in the

implementation of hybrid and web responsive mobile applications. Relatively in

line with the complexity experienced in the views and controllers development,

the configuration of the development environment was also ranked as complex in

native and hybrid mobile applications implementation. Once again, it is unex-

pected since the IDEs of such kind of applications usually have features to deal

with external dependencies, as well as to debug and simulate the application

execution.

48

Furthermore, also concerning the ranking of the sub-tasks, we observed that

sub-tasks aimed at integrating were among the most complex in several subsys-

tems. Moreover, we identified a complementarity between these sub-tasks even

if belonging to different subsystems. This complementarity involves:

• The design, implementation, and consumption of custom RESTful web

services, that span across Back-end Development and Gateways Integra-

tion subsystem.

• The development of methods to achieve the connection between the Gate-

way devices and the third party services APIs, that spans across Gateways

Development and Gateways Integration subsystems.

• The design, implementation, and integration of the persistence compo-

nent, that spans across the Back-end development and the Back-end inte-

gration.

This observation emerged from the ranking and confirmed by the comments of

the respondents, reinforce our perception of the significant complexity around

the integration of heterogeneous software components. Both when consuming

external services as well as when implementing custom integrations based on

each project business logic. As outlined in the literature, dealing with the re-

quired level of interoperability is considerably painful to novices when developing

IoT systems.

Furthermore, the lack of proper documentation and examples about how

to integrate the subsystems is one of the main reasons why integration tasks

are perceived as challenging. The difficulty to find well-structured documenta-

tion that might be understood by a novice was repeatedly mentioned by the

respondents of the survey. For this reason, in all the subsystems the sub-tasks

regarding integration were ranked among the first three.

The results from the survey point to the need to support novice IoT de-

velopers in dealing with several protocols, formats, authentication mechanisms,

and streaming data coming in real-time. However, this support must be ad-

49

dressed both from the conceptual and technical perspectives. On the one hand,

providing documentation that may be easily comprehended by non-expert IoT

developers, and on the other, tools that would ease the configuration and de-

velopment of certain software components integration.

From our experience with the university course that the survey respondents

attended, we observed that the implementation of the integration between soft-

ware components is similar across different projects developed by the respon-

dents (especially when third-party services are involved). For this reason, we

envisioned that, if documented, the code developed by the novices might pro-

vide some guidance to other programmers that are in the process of overcoming

the same learning issues. In fact, being able to observe how someone else coded,

what others paid attention to, and how they solved problems all support learn-

ing better ways to code and access to superior knowledge [31]. In this regard,

we worked in what we named Code Recipes [32], i.e., summarized and well-

defined documentation modules, independent from programming languages or

run-time environments. They are specified through a set of metadata and con-

sist of multiple code fragments along with documentation and links to ease the

understanding of such code, in order to implement a given integration between

subsystems of an IoT system.

Another possible approach might consider the automation of the sub-tasks

that were rated as the most time spending. Both code generation and its deploy-

ment across several devices could be automated in such a way that novices just

have to specify some custom parameters. Software Product Lines [33][34] might

be a viable solution in this direction as long as it deals with the heterogeneity of

IoT devices, protocols, and programming languages. Finally, it would be worth

focusing on the lack of tools to debug the communication between devices and

software components across the subsystems, giving some insight to the novices

about possible failures in the data exchange process.

In this work we tried to propose a reference architecture as generic as possi-

ble, taking distance from any technological stack. For this reason, we consider

that the survey structured around this architecture could be useful to a wide

50

range of IoT developers. Nevertheless, it must be said that since that our re-

search questions concern the software development perspective, our findings do

not take into consideration the physical configuration and deployment of IoT

systems. Future work could address the identification of the most complex issues

concerning the Security implementation from the software perspective.

5.1. Implications

The survey presented in this work aimed at gaining an understanding of the

challenges that novice programmers face when developing an IoT system. The

first research question enabled us to weight all development tasks, identifying

their difficulty level and the time that novices spent completing them. In the

second research question, we could determine that some of the development

tasks perceived as complex concern aspects that are common across various

subsystems. Examples are: the development of user interfaces, the configura-

tion of development environments, and the development of the business logic.

On the other hand, there are development tasks that concern aspects that are

split across various subsystems. Examples are: the methods or functions to

integrate the Gateway with the third-party service APIs, the implementation

and integration of the persistence component, and the design, implementation,

and consumption of the RESTful web services. The third research question

provided insights about the causes behind the challenging issues faced by the

novices. We identified learning curve issues, integration between subsystems is-

sues, and configuration and deployment issues. The most frequently reported is-

sues concerned: the difficulty to find well-structured documentation that might

be understood by a novice, the complexity inherent to the integration of the

subsystems, and the integration with third-party services.

We consider that identifying these challenges might have an impact both in

academic and industrial contexts. Our findings could be used to ease the learn-

ing curve in the teaching scenario, and to make the IoT systems development

more efficient in the software industry by improving on-boarding time estima-

tions, hiring criteria, and human resource management within the projects. We

51

recommend that special attention should be given to the integration of dif-

ferent subsystems, taking into account the various protocols, formats, authen-

tication mechanisms (specially OAuth), and real-time data streaming. Among

these integrations, the integration with third-party services resulted particularly

painful. Therefore we suggest that research efforts should envision automation

or debugging tools, as well as improved documentation strategies. Finally, more

empirical studies are required to validate our findings with a diverse set of prac-

titioners.

6. Validity of results

This section examines the threats to the validity according to the classifica-

tion schema proposed by Cook and Campbell [35]. In that schema, four types

of threats to validity are defined: conclusion validity, internal validity, construct

validity, and external validity. In the following sections we present a detailed

description of each type of threats to validity, as well as some considerations

about the repeatability of our work (Section 6.5).

6.1. Internal validity

Threats to internal validity regard issues that may indicate a causal rela-

tionship, although there is none [36]. In this survey, threats to internal validity

concerned the instrumentation, the subjects selection, and the maturation.

With regard to the instrumentation, the pilot survey (Section 3.3) enabled

us to inspect and determine to what extent the generic architecture, its subsys-

tems, and the corresponding sections, tasks, and sub-tasks were understandable,

pertinent and complete. In this preliminary study, the pilot students could give

their impressions on the questionnaire and point out any other tasks that were

not listed but resulted complex to achieve. This iteration with the initial pilot

survey contributed to avoid possible threats concerning the instrumentation due

to poor question wording, unclear documentation, or bad instrument layout.

Concerning the subjects selection, students took part in the survey volun-

tarily. Nevertheless, we used the draw of a wireless speaker to motivate their

52

participation. However, as already mentioned in the Survey Design and Meth-

ods section, the consistency between the time spent and the number of sections

answered, indicates that respondents did not skip several sections or sub-tasks

of the questionnaire intentionally to participate in the draw. Consequently, we

might say that the voluntary basis and the motivation draw did not influence

the obtained results significantly. Furthermore, as stated in Section 3.5 and

shown in Table 3, we checked the distribution of exam scores to exclude the risk

that only the best students were motivated to participate.

Finally, to avoid the maturation threats due to the fatigue or boredom,

we allowed the participants to save partially finished surveys, so they had the

chance to complete it in different moments. Nevertheless, as shown in Table 4,

all the participants completed the survey answering it in their first attempt, and

completed it within 46 minutes.

6.2. External validity

Threats to external validity are conditions that limit the ability to generalize

the experiment results outside the experiment settings [36]. In this survey,

external threats to validity had to do with the representativeness of the subject

population and the representativeness of the experimental setting.

In what refers to the representativeness of the subject population, in our

survey we had that, although most of the respondents belonged to Computer

Engineering and Electronic Engineering, the invitations to participate in the

survey were addressed to students belonging to 7 different engineering degrees.

Additionally, as mentioned in Section 3, some of them were foreign students

(Erasmus or other student exchange programs). In fact, on average, the course

hosts a cohort (20%-25%) of students from foreign universities [37]. This implies

that they received education at different universities and under a different cur-

riculum. Additionally, the ages of the participants ranged from 22 to 39 years

old. Finally, we did not exclude participants on the basis of their final grades.

Consequently, the subject population, given their heterogeneity regarding

the bachelor degree, the home university, the age, and the performance in the

53

course, although not statistically representative, is a mix that is frequently en-

countered among IoT novice developers. However, it would be desirable to have

had more women participating, as well as a higher percentage of students from

other disciplines, apart from Computing Engineering and Electronic Engineer-

ing. Nevertheless, given the demographics of the course itself, such a scenario

was not likely in the survey.

On the other hand, in pursuit of an experimental setting representative of the

studied context, we decided to design our survey based on the current IoT state

of the art, considering the industrial perspective and using it to analyze the

academical projects that the novices implemented. Concerning the industrial

perspective, we started from the analysis of various reference IoT architectures

that were developed by some of the most influential industry actors in the

IoT landscape. Later, concerning the academical perspective, we faced the

challenge to make the reference IoT architectures understandable to the students

based on the experience that they acquired when developing their projects.

To that end, we analyzed the architectures of the Ambient Intelligence course

projects developed over the years, identified commonalities, and mapped their

components to the building blocks of the industry IoT reference architectures.

Based on these analyses, from the reference architectures and the course projects

architectures, we developed a generic architecture on which we structured the

survey. The purpose of structuring the survey upon this generic architecture

was, on one hand, to provide respondents with a common understanding about

the software components involved in an IoT system, and on the other hand, to

be in line with the industry state of the art, notwithstanding the specificities

of the projects that were developed in the course. Similarly, we tried to avoid

as much as possible to tie our generic architecture to a specific architectural

pattern or technology stack. In this manner, we aimed at guaranteeing that,

independently from the software stack, our proposed generic architecture and

the survey would be useful in other scenarios to assess the most painful issues

that novices experience while developing IoT projects.

However, we must point out that, as already described in Section 3, we

54

decided not to represent in our generic architecture the Security component

because it was outside the course syllabus. Therefore, if this survey would be

applied in an IoT-related course in which novice programmers are exposed to the

security issues that emerge from security-related operations, a new component

must be added to our generic architecture as well as its associated tasks and

sub-tasks. Nonetheless, according to the experience reports that we studied in

the Related Works, it is very unlikely to introduce security concerns in a course

targeted at IoT novice programmers. In the same vein, our focus in this survey

was on the software development perspective of IoT systems. If a later study

aims at getting understanding about the most painful issues concerning the

deployment of the hardware, we consider that the generic architecture is still

valid, but the Sensors and Actuators subsystems, which are already represented

in the generic architecture, must be defined in terms of a new set of tasks and

subtasks. Similarly, on every subsystem, new tasks and subtasks must be added

to the ones that we already defined.

6.3. Construct validity

Threats to construct validity refer to the extent to which the experiment set-

ting actually reflects the construct under study [36]. In this survey, construct

threats to validity concerned the inadequate preoperational explication of con-

structs, the mono-method bias, and, in the field of social threats, the evaluation

apprehension.

To avoid the inadequate preoperational explication of constructs, when for-

mulating the first research question, we opted to study the complexity, which

is an ambiguous concept by itself, in terms of well-defined constructs such as

difficulty-level and time-spent. This way, before translating these constructs

into measures, we made sure that the criteria to quantify the complexity was

clear enough to the respondents. Furthermore, to avoid confounding constructs

and levels of constructs, we decided to translate these difficulty-level and time-

spent constructs in a 5-point ordinal scale, considering that more than their

absence or presence, it was the level of difficulty and time-spent which is of

55

importance to the outcome.

Furthermore, to avoid mono-method bias, we addressed the research ques-

tions using different kinds of measures. Namely, the rating of the sub-tasks

(measured using a Likert scale) was complemented with the ranking of the most

complex ones and cross-checked with the justification of the participants about

their ranking choice (captured through an open question). Thus, by including

quantitative and qualitative measures, we aimed at drawing conclusions free

from measurement bias.

Regarding the social threats, we opted to conduct the survey anonymously,

and only after the participants completed with success the course. In this man-

ner, we were seeking to avoid evaluation apprehension so that the participants

were guaranteed that they could be sincere about all the issues that they may

have experienced without being afraid of some negative impact in their course

grade, nor expecting some bonus. Furthermore, it was also explained very

clearly to the participants that the study was not aimed at evaluating their

skills or performance but to identify the most challenging issues that they ex-

perienced during the development of their projects.

6.4. Conclusion validity

Threats to conclusion validity regard issues that affect the ability to draw

the correct conclusion about relations between the treatment and the outcome

of an experiment [36]. In this survey, conclusion threats to validity regarded

the low statistical power, the reliability of measures, the reliability of treatment

implementation, and the random heterogeneity of subjects.

Concerning the low statistical power, in our survey, we would have liked to

have a larger sample size to achieve higher statistical power and afford better

generalizability. Nevertheless, the length of our survey hampered higher par-

ticipation (for every completed survey, we had 1.12 abandoned surveys, i.e.,

students who started but did not complete the survey) and, on the other hand,

a shorter version would have covered only a few topics. However, in this regard,

it must be clarified that in our survey, more than attempting to infer a prop-

56

erty of a population, we were trying to explore the variety of challenges that

IoT novice developers face. Besides, our open questions could contribute to

detecting a mismatch between our interpretation of the data and respondents’

experience.

The validity of an experiment is highly dependent on the reliability of the

measures, and they can be negatively affected by factors such as poor ques-

tion wording, bad instrumentation, or bad instrument layout. In this sense,

we consider that, as previously mentioned in the internal validity threats, the

pilot study (Section 3.3) enabled us to avoid these instrumentation-related fac-

tors. Furthermore, the reliability of treatment implementation describes the

risk that the implementation is not similar between different persons applying

the treatment or across different occasions. In our case, since the survey was

applied online with the same platform, and under the same conditions for all

the participants, we consider that the implementation is rather similar between

the respondents. Finally, as previously stated in the external validity threats,

the subject population has a reasonable degree of heterogeneity but framed in

the context of novice IoT programmers. Hence, we consider that such hetero-

geneity does not lead to random heterogeneity of subjects, which describes the

risk that the variation due to individual differences is larger than due to the

treatment [36].

6.5. Repeatability

Our proposed generic architecture, all its tasks, and their sub-tasks, as well

as the structure of the survey, and the followed methodology are available from

the authors (Section 3). Therefore, concerning the artifacts used for the survey

execution, we consider the repeatability of the results of our study to be good.

Nevertheless, we identify three limits to repeatability: although the architecture

was proposed to be as generic as possible if it has to be used in specific domains

or contexts, new sections must be added; secondly, if our survey is to be used in a

different educational scenario, the course to be analyzed has to be project-based,

otherways the instrument cannot be applied; finally, if specific technologies, tools

57

or languages are imposed, our proposed set of tasks and subtasks have to be

redefined to match the technical specificities of the concerned technology stack,

instead of being technology-neutral as in our work.

7. Conclusion

In this work, a survey was conducted to identify the most complex issues

experienced by novice programmers when developing IoT systems. The survey

was framed into a generic interpretation framework in which the architecture,

subsystems, and software development tasks of a significant subset of these kind

of systems were abstracted. This survey was conducted among 40 undergraduate

students that developed an IoT project during three editions of a university

course. The most complex issues were identified on the basis of the rating of

software development tasks according to their difficulty level and completion

time; the ranking of the most complex tasks; and the qualitative perception

of each respondent about such complexity. Through a generic interpretation

framework, a system-level view of the main issues was achieved and presented.

To the best of our knowledge, this is the first study to express the complex issues

as concrete development tasks that are not dependent on a particular kind of

project, its architecture, or its technology stack.

The results that emerged from the application of the survey allowed us to

determine that the most challenging issues reported by unexperienced IoT de-

velopers concerned: the difficulty to find well-structured documentation that

might be understood by a novice, the complexity inherent to the integration

of the subsystems, and the integration with third-party services. Moreover, we

could also identify, on the one hand, aspects that were perceived as complex

across various subsystems (development of user interfaces, the configuration of

development environments, and the development of the business logic), and on

the other hand, aspects whose complexity is split across various subsystems

(integration between the Gateway and the third-party service APIs, the im-

plementation and integration of the persistence component, and the design,

58

implementation, and consumption of the RESTful web services). We consider

that our findings enable to ease the learning curve in the teaching of IoT, and

might help to improve on-boarding time estimations, hiring criteria, and human

resource management within the industry IoT projects. Our future work will

start from the results of the survey for designing and developing mechanisms

(both tools and methodologies) targeted at supporting novice programmers in

realizing IoT systems. Indeed, a first approach were the aforementioned Code

Recipes [32]; summarized and well-defined documentation modules, independent

from programming languages or run-time consisting of multiple code fragments

along with documentation and links, and whose main purpose is to ease the

understanding of such code, in order to implement a given integration between

subsystems of an IoT system. Finally, based on our results, we suggest that

research efforts should envision automation or debugging tools, as well as im-

proved documentation strategies for the development of IoT systems.

References

[1] D. Miorandi, S. Sicari, F. D. Pellegrini, I. Chlamtac, Internet of things: Vi-

sion, applications and research challenges, Ad Hoc Networks 10 (7) (2012)

1497 – 1516. doi:10.1016/j.adhoc.2012.02.016.

[2] J. A. Stankovic, Research directions for the internet of things, IEEE Inter-

net of Things Journal 1 (1) (2014) 3–9. doi:10.1109/JIOT.2014.2312291.

[3] P. Patel, D. Cassou, Enabling high-level application development for the

internet of things, Journal of Systems and Software 103 (2015) 62 – 84.

doi:10.1016/j.jss.2015.01.027.

[4] F. Corno, L. De Russis, Training engineers for the ambient intelligence

challenge, IEEE Transactions on Education 60 (1) (2017) 40–49. doi:

10.1109/TE.2016.2608785.

[5] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput.

Netw. 54 (15) (2010) 2787–2805. doi:10.1016/j.comnet.2010.05.010.

59

https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1109/JIOT.2014.2312291
https://doi.org/10.1016/j.jss.2015.01.027
https://doi.org/10.1109/TE.2016.2608785
https://doi.org/10.1109/TE.2016.2608785
https://doi.org/10.1016/j.comnet.2010.05.010

[6] C.-W. Tsai, C.-F. Lai, A. V. Vasilakos, Future internet of things: Open

issues and challenges, Wirel. Netw. 20 (8) (2014) 2201–2217. doi:10.

1007/s11276-014-0731-0.

[7] S. Chauhan, P. Patel, F. C. Delicato, S. Chaudhary, A development frame-

work for programming cyber-physical systems, in: 2016 IEEE/ACM 2nd

International Workshop on Software Engineering for Smart Cyber-Physical

Systems (SEsCPS), 2016, pp. 47–53. doi:10.1109/SEsCPS.2016.016.

[8] S. K. Datta, C. Bonnet, Easing iot application development through

datatweet framework, in: 2016 IEEE 3rd World Forum on Internet

of Things (WF-IoT), 2016, pp. 430–435. doi:10.1109/WF-IoT.2016.

7845390.

[9] I. Salman, A. T. Misirli, N. Juristo, Are students representatives of pro-

fessionals in software engineering experiments?, in: 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, Vol. 1, 2015, pp.

666–676. doi:10.1109/ICSE.2015.82.

[10] A. Taivalsaari, T. Mikkonen, A roadmap to the programmable world:

Software challenges in the iot era, IEEE Software 34 (1) (2017) 72–80.

doi:10.1109/MS.2017.26.

[11] J.-P. Vasseur, A. Dunkels, Interconnecting Smart Objects with IP: The

Next Internet, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2010.

[12] S. K. Datta, C. Bonnet, R. P. Ferreira Da Costa, J. Härri, Datatweet:

An architecture enabling data-centric iot services, in: 2016 IEEE Re-

gion 10 Symposium (TENSYMP), 2016, pp. 343–348. doi:10.1109/

TENCONSpring.2016.7519430.

[13] M. Weyrich, C. Ebert, Reference Architectures for the Internet of Things,

IEEE Software 33 (1) (2016) 112–116. doi:10.1109/MS.2016.20.

60

https://doi.org/10.1007/s11276-014-0731-0
https://doi.org/10.1007/s11276-014-0731-0
https://doi.org/10.1109/SEsCPS.2016.016
https://doi.org/10.1109/WF-IoT.2016.7845390
https://doi.org/10.1109/WF-IoT.2016.7845390
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1109/MS.2017.26
https://doi.org/10.1109/TENCONSpring.2016.7519430
https://doi.org/10.1109/TENCONSpring.2016.7519430
https://doi.org/10.1109/MS.2016.20

[14] Intel, The Intel IoT Platform, white paper (2015).

URL https://www.intel.com/content/www/

us/en/internet-of-things/white-papers/

iot-platform-reference-architecture-paper.html

[15] Microsoft, Microsoft Azure IoT Reference Architecture, white paper (2018).

URL http://aka.ms/iotrefarchitecture

[16] G. Stubbings, S. Polovina, Levering object-oriented knowledge for service-

oriented proficiency, Computing 95 (9) (2013) 817–835. doi:10.1007/

s00607-013-0304-6.

[17] I. P. Cvijikj, F. Michahelles, The Toolkit Approach for End-user Participa-

tion in the Internet of Things, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2011, pp. 65–96. doi:10.1007/978-3-642-19157-2_4.

[18] D. J. Cook, J. C. Augusto, V. R. Jakkula, Ambient intelligence: Tech-

nologies, applications, and opportunities, Pervasive and Mobile Computing

5 (4) (2009) 277 – 298. doi:10.1016/j.pmcj.2009.04.001.

[19] G. Kortuem, A. K. Bandara, N. Smith, M. Richards, M. Petre, Educating

the internet-of-things generation, Computer 46 (2) (2013) 53–61. doi:

10.1109/MC.2012.390.

[20] D. Dobrilovic, Z. Stojanov, B. Odadzic, V. Sinik, Platform for teaching

communication systems based on open-source hardware, in: 2015 IEEE

Global Engineering Education Conference (EDUCON), 2015, pp. 737–741.

doi:10.1109/EDUCON.2015.7096051.

[21] D. Dobrilovic, S. Zeljko, Design of open-source platform for introducing

internet of things in university curricula, in: 2016 IEEE 11th Interna-

tional Symposium on Applied Computational Intelligence and Informatics

(SACI), 2016, pp. 273–276. doi:10.1109/SACI.2016.7507384.

61

https://www.intel.com/content/www/us/en/internet-of-things/white-papers/iot-platform-reference-architecture-paper.html
https://www.intel.com/content/www/us/en/internet-of-things/white-papers/iot-platform-reference-architecture-paper.html
https://www.intel.com/content/www/us/en/internet-of-things/white-papers/iot-platform-reference-architecture-paper.html
https://www.intel.com/content/www/us/en/internet-of-things/white-papers/iot-platform-reference-architecture-paper.html
http://aka.ms/iotrefarchitecture
http://aka.ms/iotrefarchitecture
https://doi.org/10.1007/s00607-013-0304-6
https://doi.org/10.1007/s00607-013-0304-6
https://doi.org/10.1007/978-3-642-19157-2_4
https://doi.org/10.1016/j.pmcj.2009.04.001
https://doi.org/10.1109/MC.2012.390
https://doi.org/10.1109/MC.2012.390
https://doi.org/10.1109/EDUCON.2015.7096051
https://doi.org/10.1109/SACI.2016.7507384

[22] A. Ahmad, K. Li, C. Feng, S. M. Asim, A. Yousif, S. Ge, An empirical

study of investigating mobile applications development challenges, IEEE

Access 6 (2018) 17711–17728. doi:10.1109/ACCESS.2018.2818724.

[23] M. E. Joorabchi, A. Mesbah, P. Kruchten, Real challenges in mobile app

development, in: 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, 2013, pp. 15–24. doi:10.1109/

ESEM.2013.9.

[24] S. M. Sohan, F. Maurer, C. Anslow, M. P. Robillard, A study of the effec-

tiveness of usage examples in rest api documentation, in: 2017 IEEE Sym-

posium on Visual Languages and Human-Centric Computing (VL/HCC),

2017, pp. 53–61. doi:10.1109/VLHCC.2017.8103450.

[25] M. P. Robillard, R. DeLine, A field study of api learning obstacles,

Empirical Software Engineering 16 (6) (2011) 703–732. doi:10.1007/

s10664-010-9150-8.

[26] G. Uddin, M. P. Robillard, How api documentation fails, IEEE Software

32 (4) (2015) 68–75. doi:10.1109/MS.2014.80.

[27] T. Koulouri, S. Lauria, R. D. Macredie, Teaching introductory program-

ming: A quantitative evaluation of different approaches, Trans. Comput.

Educ. 14 (4) (2014) 26:1–26:28. doi:10.1145/2662412.

[28] F. Corno, L. De Russis, J. Sáenz, Pain points for novice programmers of am-

bient intelligence systems: An exploratory study, in: 2017 IEEE 41st An-

nual Computer Software and Applications Conference (COMPSAC), Vol. 1,

2017, pp. 250–255. doi:10.1109/COMPSAC.2017.186.

[29] Limesurvey: the online survey tool - open source surveys, https://www.

limesurvey.org, accessed: 2018-12-11.

[30] V. Braun, V. Clarke, Using thematic analysis in psychology, Qual-

itative Research in Psychology 3 (2) (2006) 77–101. doi:10.1191/

1478088706qp063oa.

62

https://doi.org/10.1109/ACCESS.2018.2818724
https://doi.org/10.1109/ESEM.2013.9
https://doi.org/10.1109/ESEM.2013.9
https://doi.org/10.1109/VLHCC.2017.8103450
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1145/2662412
https://doi.org/10.1109/COMPSAC.2017.186
https://www.limesurvey.org
https://www.limesurvey.org
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa

[31] L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb, Social coding in github:

Transparency and collaboration in an open software repository, in: Pro-

ceedings of the ACM 2012 Conference on Computer Supported Coopera-

tive Work, CSCW ’12, ACM, New York, NY, USA, 2012, pp. 1277–1286.

doi:10.1145/2145204.2145396.

[32] F. Corno, L. De Russis, J. P. Sáenz, Easing iot development for novice pro-

grammers through code recipes, in: Proceedings of the 40th International

Conference on Software Engineering: Software Engineering Education and

Training, ICSE-SEET ’18, ACM, New York, NY, USA, 2018, pp. 13–16.

doi:10.1145/3183377.3183385.

[33] K. Pohl, G. Böckle, F. J. v. d. Linden, Software Product Line Engineering:

Foundations, Principles and Techniques, Springer-Verlag, Berlin, Heidel-

berg, 2005.

[34] A. Abbas, I. F. Siddiqui, S. U. Lee, A. K. Bashir, Binary pattern for nested

cardinality constraints for software product line of iot-based feature models,

IEEE Access 5 (2017) 3971–3980. doi:10.1109/ACCESS.2017.2680470.

[35] T. D. Cook, D. Campbell, Quasi-Experimentation: Design and Analysis

Issues for Field Settings, Houghton Mifflin, 1979.

[36] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, A. Wessln,

Experimentation in Software Engineering, Springer Publishing Company,

Incorporated, 2012.

[37] F. Corno, L. De Russis, D. Bonino, Educating internet of things profession-

als: The ambient intelligence course, IT Professional 18 (6) (2016) 50–57.

doi:10.1109/MITP.2016.100.

63

https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/3183377.3183385
https://doi.org/10.1109/ACCESS.2017.2680470
https://doi.org/10.1109/MITP.2016.100

	Introduction
	Background and Related Work
	Easing the Development of IoT Systems
	Novice Programmers in the IoT
	Identifying programmers issues

	Survey Design and Methods
	Instrument development
	Initial generation of question and answer options
	Initial pilot survey
	Survey instrument
	Administration and population

	Results
	Demographics
	Research questions
	RQ1. Rating of the sub-tasks
	Section A: End-user subsystem
	Sections B and C: Gateways subsystem
	Sections D and E: Back-end subsystem
	Summary of RQ1

	RQ2. Ranking of the sub-tasks
	Summary of RQ2

	RQ3. Qualitative perception of the survey respondents
	Learning curve issues
	Integration between subsystems issues
	Configuration and deployment issues
	Summary of RQ3

	Discussion
	Implications

	Validity of results
	Internal validity
	External validity
	Construct validity
	Conclusion validity
	Repeatability

	Conclusion

