
Empowering End Users in Debugging Trigger-Action
Rules

Fulvio Corno
Politecnico di Torino

Torino, Italy
fulvio.corno@polito.it

Luigi De Russis
Politecnico di Torino

Torino, Italy
luigi.derussis@polito.it

Alberto Monge Roffarello
Politecnico di Torino

Torino, Italy
alberto.monge@polito.it

ABSTRACT
End users can program trigger-action rules to personalize
the joint behavior of their smart devices and online services.
Trigger-action programming is, however, a complex task for
non-programmers and errors made during the composition
of rules may lead to unpredictable behaviors and security
issues, e.g., a lamp that is continuously flashing or a door that
is unexpectedly unlocked. In this paper, we introduce EUDe-
bug, a system that enables end users to debug trigger-action
rules. With EUDebug, users compose rules in a web-based ap-
plication like IFTTT. EUDebug highlights possible problems
that the set of all defined rules may generate and allows their
step-by-step simulation. Under the hood, a hybrid Seman-
tic Colored Petri Net (SCPN) models, checks, and simulates
trigger-action rules and their interactions. An exploratory
study on 15 end users shows that EUDebug helps identifying
and understanding problems in trigger-action rules, which
are not easily discoverable in existing platforms.

CCS CONCEPTS
•Human-centered computing→Human computer in-
teraction (HCI);User studies; • Software and its engineer-
ing→ Visual languages.

KEYWORDS
Internet of Things, Trigger-Action Programming, Petri Nets,
Semantic Web, End-User Debugging

ACM Reference Format:
Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019.
Empowering End Users in Debugging Trigger-Action Rules. In CHI
Conference on Human Factors in Computing Systems Proceedings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300618

(CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3290605.3300618

1 INTRODUCTION
The Internet of Things (IoT) is a well-established paradigm
that already helps society with applications for the individ-
ual and for the community [13]. People, in fact, interact daily
with a growing number of Internet-enabled devices [19] in
many different contexts, ranging from their smart homes
to smart cities. Furthermore, the IoT ecosystem can be de-
fined from a wide perspective [1, 21], by including not only
physical devices, but also online services such as messaging
platforms and social networks. The result is a complex net-
work of smart objects, either physical or virtual, that are able
to interact and communicate with each other, with humans,
and with the environment. In this complex domain, profes-
sional programmers cannot foresee all the possible situations
end users may encounter when interacting with their IoT
ecosystem, and existing software development cycles are
still too slow to respond to user needs [21].
To solve these issues, End-User Development (EUD) can

put the personalization of IoT ecosystems in the hands of end
users, i.e., the subjects who are most familiar with the actual
needs to be met. Several works in the literature demonstrate
the effective applicability of EUD techniques for the creation
of personalized applications in various domains [15, 18, 21,
29, 36, 37], including the IoT. Nowadays, end users who want
to personalize their IoT ecosystem can take advantage of
visual programming platforms such as IFTTT1 or Zapier2. In
such platforms, users can program the joint behavior of their
devices and online services by defining trigger-action rules
such as “if the Nest camera in the kitchen detects a movement,
then send me a Telegram message.”

Despite apparent simplicity, trigger-action programming
is often a complex task for non-programmers [24] and one
of the most important and urgent challenges is the need to
avoid possible conflicts [10] and to assess the correctness [17]
of trigger-action rules. Errors in this context, in fact, can lead
to unpredictable and dangerous behaviors [7]: while posting
a content on a social network twice could be considered

1https://ifttt.com, last visited on September 18, 2018
2https://zapier.com, last visited on September 18, 2018

https://doi.org/10.1145/3290605.3300618
https://doi.org/10.1145/3290605.3300618
https://ifttt.com
https://zapier.com

Figure 1: EUDebug is a system for debugging trigger-action rules that allows the user to: a) compose a new rule; b) view any
problems that the rule may generate; c) further investigate each problem with a step-by-step simulation; and d) edit the rule
to fix the problem or save it anyway.

a trivial issue, wrong rules could unexpectedly unlock the
main door of a house, thus generating a security threat.

In this paper, we introduce EUDebug, a system that enables
end users to debug their trigger-action rules. The goal of EU-
Debug is to properly warn users when they are defining any
troublesome or potentially dangerous behavior, according
to two strategies: (i) by assisting them in identifying rule
conflicts, and (ii) by helping them foresee the run-time behav-
ior of their rules through step-by-step simulation. Figure 1
shows a sample usage scenario:

a) The user composes a new trigger-action rule in a web-
based application modeled after IFTTT (e.g., “if the
security camera in the office is armed, then unlock the
door”). As the user is composing the rule, EUDebug
employs a novel hybrid Semantic Colored Petri Net
to model, check, and simulate the rule with respect to
previously defined trigger-action rules.

b) When the rule composition is completed, EUDebug
highlights possible problems that the rule may gener-
ate, by providing a short explanation to the user.

c) If needed, the user can further inspect and understand
the problems by asking EUDebug to perform and show
a step-by-step simulation of the problematic rules.

d) Finally, the user can edit the composed rule or decide
to ignore the highlighted problems, thus saving the
rule in the current format.

Thanks to the Semantic Colored Petri Net, EUDebug is
able to detect problems in rules that involve different types
of devices but with similar functions. The semantic represen-
tation, in fact, allows the net to reason about the final goal
of each object (e.g., illumination, messaging, . . .) to detect
and show problems.
To our knowledge, EUDebug is the first attempt to pro-

vide debugging features to end users during the composition
of trigger-action rules for their IoT ecosystem. The user in-
terface of our EUDebug prototype is modeled after IFTTT
and shares with it the same metaphors and the same expres-
siveness. This choice was made deliberately: the form-filling
procedure adopted by IFTTT helps users avoid syntactical
errors during the composition of a rule and, according to the
results of a comparative study held by Caivano et al. [10]
among different EUD platforms, IFTTT is the most accurate
in terms of correct rules created, the most effective, and the
least difficult to use.

To investigate whether EUDebug can help end users iden-
tify and understand problems in trigger-action rules, we ran
an exploratory study with 15 university students coming
from various backgrounds, but excluding those who had pre-
vious experience in computer science and programming, and
with IFTTT. Each of them used EUDebug to compose 12 dif-
ferent trigger-action rules that generated 5 problems. They
found EUDebug useful to identify and understandmost of the

problems they encountered while composing trigger-action
rules, which are not easily discoverable within existing plat-
forms. In addition, they found the step-by-step simulation to
be fundamental for understanding some types of problems.

Finally, this paper makes the following contributions:

• We introduce EUDebug, a system to enable end users
to debug trigger-action rules in their IoT ecosystem,
and we characterize the problems to be detected for
trigger-action rules.

• We show two complementary strategies exploited by
EUDebug towards end-user debugging in the IoT: to
assists users in identifying rule conflicts, and to help
them simulate and foresee the run-time behavior of
their rules.

• Wepresent a hybrid Semantic Colored Petri Net (SCPN)
formalism, able to model, check, and simulate trigger-
action rules and their interactions.

• In a study with 15 participants, we show that EUDebug
helps identify and understand most of the problems
that may arise in a set of trigger-action rules.

2 RELATEDWORK
EUDebug lies at the intersection of research in three related
areas: (i) trigger-action programming in the IoT, (ii) end-user
debugging, and (iii) rule modeling and analysis.

Trigger-Action Programming in the IoT
With the technological advances we are confronting today,
people are increasingly moving from passive consumers to
active producers of information, data, and software [32], and
End-User Development (EUD) approaches and methodolo-
gies have been extensively explored in different contexts,
e.g., mobile environments [33], smart homes [6, 36], and web
mashups [16, 35]. The explosion of the IoT further increased
the need of allowing end users to customize the behavior
of their smart devices and online services. Not surprisingly,
in the last 10 years, several commercial platforms for end-
user personalization, such as IFTTT and Zapier, were born.
Such platforms typically adopt one of the most common
EUD paradigm, i.e., Trigger-Action Programming. By defin-
ing trigger-action rules, users can connect a pair of smart
devices or online services in such a way that, when an event
(the trigger) is detected on one of them, an action is automat-
ically executed on the second.

Despite the trigger-action programming paradigm can ex-
press most of the behaviors desired by potential users [5, 36],
and is adopted by the most common EUD platforms [17],
the definition of trigger-action rules can be difficult for non-
programmers. Multiple studies investigated different aspects
of contemporary platforms like IFTTT, ranging from em-
pirical characterization of the performance and usage of

IFTTT [31] to human factor related to their adoption in the
smart home [36]. Large-scale analysis of publicly shared
rules on IFTTT [37], and changes to the underlying models
are proposed as well [14, 17].

These works highlight different issues and challenges: con-
temporary EUD platforms often expose too much function-
ality [24], and adopt technology-dependent representation
models [14], thus forcing users to have a deep knowledge
of all the involved devices and online services. Moreover,
conflicts and ambiguities among rules emerged as possible
challenges [36]. As a result, users frequently misinterpret
the behavior of trigger-action rules [7], often deviating from
their actual semantics, and are prone to introduce errors [23].
Therefore, tools for trigger-action programming in the IoT
should be better tailored for end users who are not accus-
tomed to programming. In this paper, we take a step towards
such a direction with EUDebug. Systems to assist users in
foreseeing the behavior of their trigger-action rules, while
identifying conflicts and problematic rules, could indeed fa-
cilitate the adoption of EUD platforms in the real world [17].

End-User Debugging
Today’s end-user programmers include anyone who creates
artifacts that instruct computers how to perform an upcom-
ing computation, without being necessarily interested in
learning how to program. Along with the ability to create
programs comes the need to debug them, and work on end-
user debugging is only beginning to become established [22].

To our knowledge, EUDebug is the first attempt to provide
debugging features to end users who compose trigger-action
rules for their IoT ecosystem. Previous works on end-user
debugging are not related to trigger-action programming nor
the IoT, but mainly focus on mashup programming [12] and,
especially, spreadsheets [8, 22, 27]. In using spreadsheets,
in particular, users are likely to make a large number of
mistakes [9, 34], and the need of supporting end-users’ de-
bugging efforts in such tools has gained interest in the last
years [22].
By focusing on novice developers, instead, Ko and My-

ers [28] propose an interrogative debugging interface for
the Alice programming environment. The interrogative de-
bugging is a debugging paradigm by which novices can ask
why and why not questions about their program’s run-time
failures. EUDebug is inspired by this paradigm, as it assists
end users in understanding why their trigger-action rules
may be problematic through the step-by-step simulation of
the run-time behavior of the rules.

Rule Modeling and Analysis
Many prior works face the problem of formally or semi-
formally verifying event-based ruleswith different approaches,
especially in the area of databases [20, 30], expert systems [39],

and smart environments [3, 38]. Rules, indeed, have the abil-
ity to interact with each other, and even a small set of depen-
dencies between them makes it hard (and often undecidable)
the problem of predicting their overall behavior [4]. Li et
al. [30], for instance, propose a Conditional Colored Petri Net
(CCPN) formalism to model and simulate Event-Condition-
Action (ECA) rules for active databases. Petri nets are used by
Yang et al. [39] to verify rules in expert systems, and by Jin
et al. [26] to dynamically verify ECA properties such as ter-
mination and confluence. In the field of smart environments,
Vannucchi et al. [38] adopt formal verification methods for
ECA rules, while Augusto and Hornos [3] propose a method-
ological guide to use the Spin model checker to inform the
development of more reliable intelligent environments.

Themajority of the works described above aim at checking
the consistency of a set of fixed and already defined rules,
not in real time, and employ predefined use cases to validate
the algorithms. The goal of EUDebug is different: instead of
performing such an “off-line” verification of rules, EUDebug
aims at assisting end users during the definition of their
own trigger-action rules. For this purpose, we empower the
EUDebug interface with a novel Petri net formalism, similar
to CCPN but enhanced with new elements and with semantic
information.

3 CHARACTERIZING PROBLEMS IN TA RULES
To better understand which problems EUDebug should be
able to detect and show to end users, we reviewed pre-
vious works on rule analysis and trigger-action program-
ming [31, 38]. From those works, we generalize three classes
of problems to be considered in trigger-action rules for the
IoT: loops, inconsistencies, and redundancies.

Loops occur when a set of trigger-action rules are contin-
uously activated without reaching a stable state [11, 31]. An
example of a loop is:

• if I post a photo on Facebook, then save the photo on
my iOS library;

• if I add a new photo on my iOS library, then post the
photo on Instagram;

• if I post a photo on Instagram, then post the photo on
Facebook.

Inconsistencies occur when rules that are activated at
(nearly) the same time3 try to execute contradictory actions.
It is to be noticed that the typical definition is different:
“inconsistencies occur when the execution order of rules
may render different final states in the system” [11]. We
generalized this concept to consider the entire IoT ecosystem,
i.e., not only physical devices but also online services. The
order of actions performed on online services, e.g., posting

3e.g., when rules share the same trigger or when some rules trigger other
rules

a content on Facebook or sending a WhatsApp message,
indeed, is not really important, because they do not change
the internal state of a device and they do not leave the system
in a unpredictable or dangerous state. For this reason, we
analyze themeaning of the executed actions rather than their
execution order. An example of a set of rules that produces
an inconsistency is:

• if my Android GPS detects that I exit the home area,
then lock the SmartThings entrance door;

• if my Android GPS detects that I exit the home area,
then set the Nest thermostat to Away mode;

• if the SmartThings entrance door is locked, then set
the Nest thermostat to Manual mode.

Here, the three rules are executed at the same time because
the first two rules share the same trigger, while the first
rule implicitly activates the third rule. They produce two
inconsistent actions, since they set 2 contradictory modes
on the Nest thermostat, i.e., Away and Manual.

Redundancies, finally, occur when two or more rules
that are activated (nearly) at the same time have replicated
functionality [11]. An example of a set of rules that produce
a redundancy is:

• if I play a new song on my Amazon Alexa, then post
a tweet on Twitter;

• if I play a new song on my Amazon Alexa, then save
the track on Spotify;

• if I save a track on Spotify, then post a tweet on Twitter.

Here, the three rules are executed at the same time because
the first two rules share the same trigger, while the second
rule implicitly activates the third rule. They produce two
redundant actions, i.e., the first and the third rule post the
same content on Twitter.

4 THE EUDEBUG SYSTEM
The goal of EUDebug is to give end users an effective way
to debug trigger-action rules in their IoT ecosystem, a) by
assisting them in identifying rule conflicts (i.e., loops, incon-
sistencies, and redundancies) and b) by allowing a further
investigation of the run-time behavior of their rules in simu-
lation.
During the rule composition phase, EUDebug automati-

cally detects potential problems with no user intervention.
At the end of the composition process, EUDebug shows any
conflicts that the composed rule may generate by interacting
with previously defined trigger-action rules, and allows users
to further investigate why the problem happens. In this way,
EUDebug facilitates end user debugging of trigger-action
rules, rather than waiting for the problem to arise in the real
world. It consists of two main components: 1) a Semantic Col-
ored Petri Net (SCPN), which runs on a dedicated server, to

model, check, and simulate trigger-action rules, and 2) a web-
based user interface for composing trigger-action rules, for
showing any detected problems, and simulating step-by-step
the problematic rules.

Semantic Colored Petri Net
To model and check trigger-action rules, we define a novel
Semantic Colored Petri Net (SCPN) formalism. Petri nets
are bipartite directed graphs, in which directed arcs connect
places and transitions. Places may hold tokens, which are
used to study the dynamic behavior of the net. They can
naturally describe the rules as well as their non-deterministic
concurrent environment [26]. We chose such an approach to
allow users to simulate step-by-step the execution of their
rules: by firing a transition at a time, tokens move in the net
by giving the idea of a possible execution flow. As a member
of Petri nets family, Colored Petri Net (CPN) [25] combine
the strengths of ordinary Petri nets with the strengths of a
high-level programming language. In particular, SCPN is a
Colored Petri Net similar to the Conditional Colored Petri
Net (CCPN) formalism [30] proposed to model ECA rules in
active databases. Differently from such a formalism, we do
not consider conditions and we use a semantic model both to
generate and analyze the net. Furthermore, as explained in
the following, each token assumes different semantic “colors”
by moving in the net. Such semantic information allows the
inference of more information from the simulation of the
net, i.e., to discriminate between problematic and safe rules.

Adding Semantics to Trigger-Action Rules. The novel char-
acteristic of the SCPN formalism is the usage of Semantic
Web technologies in conjunction with a Colored Petri Net.
Adding semantic to IoT objects, triggers, and actions is a
common approach [2]. In our case, we exploited EUPont [14]
as the semantic model. EUPont4 is an ontological high-level
representation of trigger-action programming that describes
smart devices and online services on the basis of their cate-
gories and capabilities, i.e., their offered services. Here, the
semantic information is used to build and analyze a SCPN.
Trigger-action rules are first translated into their respective
semantic representation.

In detail, for each trigger or action, the ontology provides
information about the device or online service by which
they are offered, and any relationship with other triggers or
actions, e.g., the fact that the action turn on the Philips Hue
lamp implicitly activates the trigger the Philips Hue lamp
has been turned on. Furthermore, triggers and actions are
classified through a tree of classes that represents the final
behavior they monitor, in case of triggers, or produce, in
case of actions. Triggers or actions that are classified under
4http://elite.polito.it/ontologies/eupont.owl, last visited on September 18,
2018

Figure 2: The SCPN generated by analyzing the rules of Ta-
ble 1.

Trigger (if. . .) Action (then. . .)

R1 my Android GPS detects
that I exit the home area
(T1)

lock the SmartThings en-
trance door (A1)

R2 the SmartThings en-
trance door is locked
(T2)

set the Nest thermostat to
Away mode (A2)

R3 the SmartThings en-
trance door is locked
(T2)

turn off the Philips Hue
lamp in the kitchen (A3)

R4 the SmartThings en-
trance door is unlocked
(T3)

arm the Homeboy secu-
rity camera (A4)

R5 the Homeboy security
camera is armed (T4)

send me a Telegram mes-
sage (A5)

R6 the Homeboy security
camera is armed (T4)

lock the SmartThings en-
trance door (A1)

R7 the Homeboy security
camera is armed (T4)

unlock the SmartThings
entrance door (A6)

Table 1: The rules that generate the SCPN of Figure 2.

the same EUPont classes, in particular, are similar in terms
of final functionality, while triggers or actions that do not
share any EUPont class are functionally contradictory. For
example, the two actions “set the Nest thermostat to Home
mode” and “set 25 Celsius degree on the Nest thermostat” share
the same final functionality, because they are both classified
under the same EUPont class, i.e., IncreaseTemperatureAction.
Compared to these actions, the action “set the Nest thermostat
to Away mode” is contradictory in terms of functionality,
because it is classified under a different EUPont class, i.e.,
DecreaseTemperatureAction. This information is used by a
SCPN to “color” the places of the Petri net and to detect
inconsistencies and redundancies among rules.

Formalism. To exemplify and better explain the SCPN for-
malism, Figure 2 shows the net built starting from the seven
rules in Table 1, with R7 being the rule in composition.

http://elite.polito.it/ontologies/eupont.owl

Triggers and actions of a given object, e.g., SmartThings,
are modeled as places, i.e., Trigger Place (TP) and Action Place
(AP). For instance, in Figure 2, a TP is T 1 while an AP is A1.
When a trigger is in common between more than one rule
(as in R2 and R3), the associated places are duplicated (e.g.,
T 2copy in Figure) and connected through a Copy Transition.
When a token is in the original place, the Copy Transition
simply replicates the token in each copied place. APs follow
a slightly different process than TPs: an AP can be reused for
rules that share the same action, e.g., A1 models the action
offered by both R1 and R6 (Figure 2). TPs and APs can be
connected each other through:
Rule Transition, a connection between a trigger and an

action of the same rule. Rule Transitions model the rule
defined by the user. They remove a token from a TP
to generate a new token in an AP. In Figure 2, Rule
Transitions are indicated withTruleRx (e.g.,TruleR2 for
R2).

Trigger Transition, a connection used when an action of
a rule triggers the event of another rule. Trigger Tran-
sitions are extracted from the semantic information
contained in EUPont. They remove a token from an
AP to generate a new token in a TP. In Figure 2, Trigger
Transitions are indicated with Tactivate .

Finally, as exemplified for A2 in Figure 2, all the places are
characterized by a semantic color that represents the seman-
tic information associated with the corresponding trigger
or action. When a token cross a place, it assumes the place
color.

Rule Analysis with SCPN. To detect loops, inconsistencies,
and redundancies in trigger-action rules at composition time,
we first translate the rules into the corresponding SCPN.
Possible loops are detected by performing a depth-first search
on the net.
To detect inconsistencies and redundancies, instead, we

need to execute and analyze the net. For this purpose, tokens
are used as artifacts during the analysis of the net execution.
For starting the execution, a SCPN offers many possibilities:
in our case, to identify problems in rules at composition
time, the initial marking is a single token in the Trigger Place
related to the rule that is being defined, i.e., T 4 for R7 in Fig-
ure 2. Then, the net is executed, and the activated transitions
move the token in the net. When the token is in aTP , all the
rules that share such a specific trigger are activated. In the
first step of the execution of Figure 2, for example, the token
is removed from T4 by the Copy Transition and replicated
in each copy of T4, thus activating the Rule Transitions of
R6, R5, and R7. In the next step, the net may execute R6,
i.e., one of the activated Rule Transitions, thus moving the
token from the T 4copy to A1. This simulate the execution of
action associated with A1. Following this process, the Action

Figure 3: The user interface for composing a new trigger-
action rule, showing the selection of the service to be used
as a trigger.

Places crossed by the tokens during the execution (i.e., the
executed actions) along with the associated semantic colors
are analyzed to detect inconsistencies and redundancies. An
inconsistency is found if there are at least two executed ac-
tions that a) act on the same device or online service, and b)
are classified under different EUPont classes. A redundancy
is, instead, found if there are at least two executed actions
that a) act on the same device or web application, and b)
share the same EUPont classes.
To further exemplify, the net in Figure 2 presents a loop

arising between R4 and R7 (i.e., the rule that is being defined).
A redundancy and an inconsistency are also present. The
former arises since the action of R5 (A5) contains multiple
tokens at the end of the net execution, thus generating many
Telegram messages (an infinite number), as the trigger of
R5 (T4) is involved in the loop. The latter arises since two
APs (i.e.,A1 andA6), crossed during the execution of the net,
model two inconsistent actions, i.e., “lock the entrance door”
and “unlock the entrance door”. By getting rid of R7, a user
can eliminate all those problems.
Finally, for what concerns the rules simulation, various

evolutions of the net can be executed step-by-step by ran-
domly selecting a transition to be fired from the set of tran-
sitions that are enabled in a given moment.

EUDebug User Interface
The EUDebug user interface can be logically split in three
parts: a) Rule Composition, b) Problem Checking, and c) Step-
by-Step Explanation. The Problem Checking and the Step-
by-Step Explanation interfaces implement the two adopted
strategies for end-user debugging, respectively: identification
of rule conflicts, and simulation of the run-time behavior.

To allow the composition of trigger-action rules, in our EU-
Debug prototype, wemodeled the composition interface after
IFTTT (Figure 3) due to the popularity of the platform [17],
its ease of use and accuracy in the rule composition pro-
cess [10], and the availability of real usage data [37], which
we used to define available triggers and actions. In addition,

Figure 4: The ProblemChecking interface showing an incon-
sistency between an already existent rule and the defined
one.

the form-filling procedure it adopts helps users to avoid syn-
tactical errors during the rule composition. To compose a
rule, a user needs to first select which service (i.e., a sup-
ported smart device or web application) they want to use
as a trigger (Figure 3). Once they select a service, they can
choose the specific trigger to be used (e.g., “turned on” for
Philips Hue lamps) and fill any additional information re-
quired by the trigger (e.g., which Philips Hue lamp they want
to use). To define the action part of the rule, the user has to
repeat the same steps.
The composed rule is, then, described according to the

SCPN formalism, and analyzed by the net to look for any
loops, inconsistencies, and redundancies. The results of the
analysis of the SCPN are, in real time, shown to the user in
the Problem Checking interface (Figure 4).

The Problem Checking interface shows the rule just defined
by the user and any problems that the rule may generate.
In Figure 4, for instance, a possible inconsistency between
two rules is highlighted. To better understand the problems
and to foresee the run-time behavior of the involved trigger-
action rules, the user can click on the “Explanation” button
to open the Step-by-Step Explanation interface (Figure 5). In
such an interface, the user can simulate step-by-step what
happens within their rule, to try to understand why the
highlighted problems arise. For instance, Figure 5 shows that
the event “You exit an area” activates a sequence of trigger-
action rules that includes the rule that is being defined, and
two inconsistent actions that close and open a door at the
same time.

Implementation
The implementation of the EUDebug prototype consists of
two main components:

Rules Server It is built in Java with the Spring framework5.
It is composed of three modules: Rule Service, SCPN
Service, and Rule Controller. The Rule Service offers
the features needed to manage collections of trigger-
action rules, i.e., to create, read, update, and delete
rules through the interaction with a MySQL database.
Once a rule has been completed by a user, the SCPN
Service generates and analyzes the SCPN by retrieving
the defined rules from the Rule Service, and by using
the OWL API6 library to extract the needed seman-
tic information from the EUPont ontology. The same
module is also responsible for the step-by-step simula-
tion of the involved rules. Finally, the Rule Controller
exposes a list of REST APIs to interact with the two
services.

EUDebug Interface It is the web-based interface of the EU-
Debug prototype, built with the Angular framework7.
It interacts with the Rules Server through the provided
REST APIs.

5 EXPLORATORY USER STUDY
We ran an exploratory study with 15 participants to evaluate
whether EUDebug helps them to a) understand and b) identify
problems that may arise in their trigger-action rules. The
following questions guided our study:
(1) Understandability. Can EUDebug help end users de-

bug their trigger-action rules? Do they understand the
involved problems and why their rules generate them?

(2) Identification. Is highlighting the detected problems
sufficient to identify such problems, or do users need
the additional details provided by the step-by-step sim-
ulation? In other words, which of the two adopted
strategies is more useful?

Study Procedure
We recruited 15 university students (9 males and 6 females)
with a mean age of 20.34 years (SD = 2.50, ranдe : 18 − 25).
We excluded users who had previous experience in com-
puter science and programming. On a Likert-scale from 1
(Very Low) to 5 (Very High), participants stated their level
of technophilia (M = 3.94, SD = 0.80) and technological
savviness (M = 2.67, SD = 0.82). Furthermore, on a Likert-
scale from 1 (No knowledge at all) to 5 (Expert), participants
declared their experience with trigger-action programming
(M = 1.34, SD = 1.04). We brought each participant to our
lab for a 45-minute session using our EUDebug prototype
on a Macbook Pro connected to an external 22-inch monitor.
At the beginning of the study, participants were introduced

5https://spring.io, last visited on September 18, 2018
6http://owlapi.sourceforge.net, last visited September 18, 2018
7https://angular.io, last visited on September 18, 2018

https://spring.io
http://owlapi.sourceforge.net
https://angular.io

(a) (b) (c) (d)

Figure 5: Step-by-Step Explanation: a sequence of screenshots of the user interface related to the step-by-step simulation of
the inconsistency problem of Figure 4.

ID Trigger Service Trigger Action Service Action

TA1 Android Location You enter an area (where: home) Philips Hue Turn on lights (what: kitchen lamp)

TA2 Android Location You enter an area (where: home) Philips Hue Turn off lights (what: kitchen lamp)

TA3 Android Location You enter an area (where: home) Philips Hue Turn on color loop (what: kitchen lamp)

TA4 iOS Photo New photo added to album (album: ios photos) Dropbox Add file from URL (URL: ios photo, folder: drpb
photos)

TA5 Dropbox New file in your folder (Folder: drpb photos) Facebook Upload a photo from URL (URL: drpb photo)

TA6 Facebook New photo post by you iOS Photo Add photo to album (URL: facebook photo, Album:
ios photos)

TA7 iOS Location You exit an area (where: work) SmartThings Lock (what: office door)

TA8 SmartThings Locked (what: office door) Homeboy Arm camera (what: office camera)

TA9 Homeboy Camera armed (what: office camera) SmarThings Unlock (what: office door)

TA10 Amazon Alexa New song played Twitter Post a tweet (text: I liked the Alexa song)

TA11 Amazon Alexa New song played Spotify Save a track (track: alexa song)

TA12 Spotify New saved track Twitter Post a tweet (text: I liked the Spotify song)
Table 2: The 12 trigger-action rules composed in the study.

to trigger-action programming and to EUDebug with an
example of a rule composition. To allow us to investigate
Understandability, participants were not introduced to the
problems that rules may generate. We then presented a task
involving the composition of 12 trigger-action rules, which
include both smart devices and online services. The rules,
reported in Table 2, generated 5 different problems (i.e., 2
inconsistencies, 2 redundancies, and 1 loop):

• IC1. TA1 and TA2 generate an inconsistency, be-
cause they share the same trigger while producing
contradictory actions on the same device;

• IC2. TA7 and TA9 generate an inconsistency, be-
cause they produce contradictory actions on the same

device and are activated nearly at the same time, since
TA7 activates TA8, and TA8 activates TA9;

• RD1. TA1 and TA3 generate a redundancy, because
they share the same trigger while producing two simi-
lar actions on the same device;

• RD2. TA10 and TA12 generate a redundancy, be-
cause they produce similar actions on the same on-
line service and are activated nearly at the same time,
since TA10 and TA11 share the same trigger and TA11
activates TA12.

• LP. TA4, TA5, and TA6 generate an infinite loop, be-
cause TA4 activates TA5, TA5 activates TA6, and TA6
activates TA4;

Rules were presented one at a time on a sheet of paper in a
counterbalanced order. To make sure that all the participants
experienced a given problem in the same way, however, we
maintained the order within each problem, e.g., TA2 was
always presented after TA1. When the EUDebug interface
highlighted some problems (Problem Checking), participants
were free to decide whether to save the rule or not. Our aim
was to investigate whether participants understood the pre-
sented problems and their dangerousness, without forcing
them to discard problematic rules. Before deciding, partici-
pants could optionally use the Explanation button to perform
the step-by-step simulation of the rules that generated the
problem. All the sessions were audio recorded for further
analysis.

Measures. During the study, we collected the following quan-
titative measures:

• S - Number of rules that generated a problem saved
anyway by participants, monitored for each highlighted
problem, e.g., number of saved rules in case of loops.

• D - Number of rules that generated a problem dis-
carded by participants, monitored for each highlighted
problem.

• SbS - Number of times participants used the Step-by-
Step Explanation when experienced a specific problem.

In addition, if participants used the Step-by-Step Explana-
tion, we asked them:

• SbS Motivation - Why they decided to use the Step-
by-Step Explanation.

• SbS Usefulness - Whether and how the explanation
helped (or not) them to understand the problem.

Furthermore, when the composition of a rule generated
a problem, we asked participants for their Interpretation.
The interpretation was asked before the optional usage of
the Step-by-Step Explanation interface. In particular, when
a participant decided to discard a rule that generated a prob-
lem, they had to demonstrate to understand the problem by
retrospectively explaining why the rule generated the issue.
When they decided to save anyway a rule that generated
a problem, instead, they had to justify their choice. In the
next sections, we present and discuss the findings of the
study, by organizing the discussion around the main topics
that emerged from the analysis of the results. Qualitative
analysis was conducted by two researchers in an iterative
coding process.

EUDebug as a Helper for Understanding Problems
Differences in Users’ Behavior. Most of the participants per-
ceived EUDebug as a helper for understanding whether the
highlighted problems were “dangerous” or not. Moreover,
they exhibited different behaviors when facing the various

Rule Problem Type S D SbS

TA2 IC1 Inconsistency 1 14 5
TA9 IC2 Inconsistency 0 15 5
TA3 RD1 Redundancy 12 3 3
TA12 RD2 Redundancy 2 13 8
TA6 LP Loop 3 12 7

Table 3: The number of times participants (N = 15) saved a
rule (S), discarded a rule (D), or used the Step-by-Step expla-
nation (SbS) when a problem is highlighted.

problems, i.e., they considered redundancies as less problem-
atic than loops and inconsistencies, at least in some specific
cases.

In detail, we analyzed how many times participants saved
(or discarded) a rule that generated a given problem, i.e., the
S and D measures. As reported in Table 3, 12 participants out
of 15 (80%) discarded TA6, i.e., the rule that generated the
loop L. Instead, participants discarded the rule that generated
an inconsistency in the 96.67% of the cases, on average: for
IC1, 14 participants out of 15 (93.34%) discarded TA2, while
for IC2 all the participants discarded TA12. This seems to
suggest that participants were aware of the “danger” caused
by such problems. Conversely, participants discarded the
rule that generated a redundancy, i.e., RD1 and RD2, only in
53.34% of cases, on average. Therefore, at least in some cases,
redundancies seemed to be considered less “dangerous” and
even acceptable than loops and inconsistencies.

Key Takeaway: Participants showed different percep-
tions among the various problems. They considered loops
and inconsistency as dangerous, while they were inclined to
accept redundancies.

Virtual vs. Physical Worlds. Since participants had opposite
behaviors when facing with the two redundancies, we further
analyze the collected data and the audio recording of the
entire session. In fact, only 3 participants out of 15 (20%)
discarded the rule that generated the RD1 problem, while
13 participants out of 15 (86.67%) discarded TA12, i.e., the
rule that generated RD2. The reason for such a difference
in the participants’ behavior can be glimpsed by inspecting
the nature of the rules involved in the two redundancies. In
the first redundancy, considered as “acceptable” by the ma-
jority of the participants, both involved rules turned on the
kitchen lamp with different colors. Instead, the second redun-
dancy, considered as “unacceptable” by the majority of the
participants, produced two similar messages on Twitter. We
can preliminary conclude that redundancies in the “virtual”
world, e.g., multiple messages on the web, are more annoy-
ing compared to redundancies in the “physical” world. In
fact, rules in “physical” redundancies often send similar com-
mands to a device without drastically modifying its current

state, e.g., the fact that a lamp is turned on. On the contrary,
“virtual” redundancies typically result in duplicatedmessages
and notifications, a potentially more annoying behavior.

Key Takeaway: Redundancies in online services (e.g.,
social networks) were considered as more annoying with
respect to redundancies that involved physical devices.

Differencies in Users’ Interpretation. Most of the participants
give a correct interpretation about their choice of saving or
discarding a problematic rule. However, not all the problems
were equally understood, with loops being the most difficult
problem to understand.

In details, to investigate whether participants understood
the meaning of the encountered problems and why they
happened, we used the SbS measure and the participants’
interpretations extracted from the audio recording.
Inconsistency: For what concerns IC1, all the 14 partic-

ipants that discarded TA2 provided a sound interpretation.
P1, for example, said “the rules did not have any sense. They
turned the lights on and off at the same time. The two com-
mands (turn the lights on and turn the lights off) cannot be
executed at the same time.” P7, beside explaining the problem,
also identified a possible alternative: “I would have modified
the trigger: this rule is ok when you exit the home area.” Only
1 participant, the one that decided to save TA2, provided
an incorrect interpretation of the problem even after using
the Step-by-Step Explanation. In her interpretation, in par-
ticular, she said “I do not trust the platform, I am sure that
such two rules will never be activated at the same time.” The
15 interpretations collected for IC2 are also encouraging. 11
participants, in particular, provided a sound interpretation
after discarding TA9, such as “if the door is locked, the camera
is armed, but when the camera is armed, this rule unlocked
the door!” or “this rule will unlock the door when I leave the
office: not good.” The remaining 4 participants immediately
discarded TA9, but they provided a misinterpretation. In
their interpretation, in particular, they focused on the rule
they were evaluating, only, rather than on the entire chain
of rules that generated the problem, i.e., TA7, TA8, and TA9.
P7, for example, said “I did not save the rule because I want
the door to remain closed”, while P8 said “if the camera is
armed, the door must be closed.” A possible explanation can
be found in their decision to discard the rule without using
the Step-by-Step Explanation. On average, 5 participants out
of 15 (33.34%) used the Step-by-Step Explanation (Table 3).

Redundancy: The number of wrong interpretations of re-
dundancies is similar to the number of wrong interpretations
of inconsistencies. For what concerns RD1, 13 participants
out of 15 (86.67%) provided a sound interpretation. In partic-
ular, 11 participants out of 12 (91.67%) successfully provided
an interpretation for their decision to save TA3 anyway. All

of them declared that they were aware of what would hap-
pen, and that the highlighted issue was not a problem at
all. P6 said that the color can be seen as a “new feature” of
the first rule, while P7 asserted that “the important thing is
that the lamp is turned on, I do not care its color.” The only
participant that provided a wrong interpretation was P15,
the same participants that made an error for IC1. No one
of the 12 participants that saved TA3 used the Step-by-Step
Explanation. Instead, all the 3 participants that discarded
TA3 used the Step-by-Step Explanation, and 2 of them pro-
vided a sound interpretation, while the other focused on TA3,
only, by saying “I do not want a colored light in the kitchen”.
Also for the second redundancy, i.e., RD2, no one of the 2
participants that saved TA12 anyway used the Step-by-Step
Explanation, but all of them provided a sound interpretation.
Instead, 11 of the remaining 13 participants (84.61%) that
discarded TA12 successfully provided an interpretation. P1,
for example, explained exactly what happened by saying
“When I listen to a song on Alexa, the defined rules post a tweet
and save the track on Spotify. Now I’m defining a rule to post
on Twitter when I saved a track on Spotify, but there is already
a post on Twitter!” The remaining 2 participants, even after
using the Step-by-Step Explanation, focused on TA12, only,
by saying, for example, “it does not have any sense to post
on Twitter the song you are listening”. On average, partici-
pants used the Step-by-Step Explanation in 36.67% of cases
(Table 3).

Loop: The loop LP led participants to make more errors
in their interpretations. Since a loop can never be considered
as “acceptable”, all the 3 participants that saved TA6 failed
in providing a correct interpretation. P13, for example, did
not understand that the 3 involved rules would be executed
infinite times, because she said “I am sure that this problem
will never occur with the rules I have defined. Moreover, such
rules are useful, because the photo will be saved in 3 places at
the same time.” Furthermore, also 3 of the participants that
discarded TA6 provided an incorrect interpretation. The pre-
vailing error was that participants did not understand that
the involved rules would have been executed for an infinite
number of times: both P1 and P12, for example, said “I did
not save the rule because otherwise the same photo would have
been shared twice on Facebook.” Therefore, results suggest
that the loop was the most complex concept to understand.
A series of paired-samples t-test confirm this finding. In fact,
the number of errors in loop interpretations was significantly
higher than in redundancies (t(14) = 2.25, p < 0.05), while
such a difference was not significant with respect to inconsis-
tencies (t(14) = 1.97,p = 0.06). For the loop, the Step-by-Step
Explanation was more used (7 participants out of 15, 46.67%,
Table 3) than for the other problems. A possible explanation
of such understandability problems is that the concept of

Figure 6: Average number of explanations used and average
number of wrong interpretations for direct/indirect prob-
lems.

loop is strictly related to the mental model of users with a
computer science background.

Key Takeaway: The loop turned to be the most difficult
problem to understand, and led participants to frequently
use the Step-by-Step Explanation.

Direct vs. Indirect Problems. Finally, we noticed a possible link
between the “nature” of a problem and its understandability
by further analyzing the number of Step-by-Step Explana-
tions used and the number of wrong interpretations in each
problem. In particular, when subjected to the first 2 problems,
i.e., IC1 and RD1, participants used the Step-by-Step Explana-
tion in fewer cases, and provided less wrong interpretations
with respect to the other three problems, i.e., LP, IC2, and
RD2. Such a difference can be associated with the nature of
the problems. IC1 and RD1, in fact, are direct problems, i.e.,
problems between rules that shared the same trigger. On the
contrary, LP, IC2, and RD2 are indirect problems, because
they are caused by implicit activations between rules, i.e., an
action of a rule that implicitly activates the trigger of another
rule. Figure 6 visually shows the differences between direct
and indirect problems, and further suggests that indirect
problems are more difficult to understand, and need more
efforts, e.g., a step-by-step simulation, to be identified by end
users.

Key Takeaway: Indirect problems, i.e., problems caused
by implicit activations between rules, were difficult to un-
derstand and identify.

Highlighting Problems or Explaining Them?
To investigate whether participants found more useful one
of the two strategies adopted by EUDebug for identifying
problems in trigger-action rules, we studied the correlation
between the interface used, i.e., Problem Checking or Step-
by-Step Explanation, and the participants’ interpretations in
case of a problem (Table 4). On average, the usage of the
Problem Checking interface, only, resulted in a correct inter-
pretation in 77.81% of cases. When participants decided to

L I R Total

PC success 50% 85% 84.52% 77.81%
SbS success 71.43% 80% 93.75% 83.78%

Table 4: Number of times participants provided a correct in-
terpretation by using the Problem Checking interface, only
(PC success), or after using the Step-by-Step explanation
(SbS success).

use the Step-by-Step Explanation, the percentage of correct
interpretations increased to 83.78%. Such a difference is par-
ticularly evident for the loop L. Only 50% of the participants,
in fact, discarded TA6 by providing a correct interpretation
by using the Problem Checking interface, only. Participants
that used the Step-by-Step Explanation, instead, provided
a correct interpretation in 71.43% of cases. This seems to
suggest that, at least in some cases, highlighting the detected
problems (i.e., Problem Checking) may be not sufficient to al-
low end users in identifying possible problems in their rules,
and that a step-by-step simulation of the involved rules could
instead help users in understanding what happens.

To confirm this finding, we analyzed the participants’ feed-
back about the usage of the Step-by-Step Explanation (used
28 times in total) by group it into several topics described
below. For what concern the SbS Motivation, in most of the
cases participants asserted that they used the Step-by-Step
Explanation to “better understand the problem” (13). When
subjected to IC1, for example, P1 said “I used the Step-by-Step
Explanation because I did not understand the problem. The
two rules seemed the same to me.”. Similarly, P10 used the
step-by-step explanation for RD2 “to better understand the
redundancy concept”, while P15 provided the same motiva-
tion when subjected to the loop. In a considerable number
of cases (8), the Step-by-Step Explanation was instead used
because “the problems were composed of too many steps”,
i.e., rules that activated other rules. Not surprisingly, such
motivation was used for indirect problems, only. In one case,
for example, P14 said “I used the Explanation because I did
not understand the execution path of the rules”, while in an-
other case, P12 said “I used the Explanation because I did not
understand the relationship between the rules.” In the remain-
ing cases, participants used the Step-by-Step Explanation
because “they did not remember a rule they defined before”
(4), “to confirm their first idea about the problem” (2), and
because the “Explanation helped them before” (1).

Participants provided interesting feedback alsowhen asked
to evaluate whether and how the Explanation helped (or
not) them in understanding the problems (SbS Usefulness).
In 13 cases, participants asserted that the Step-by-Step Ex-
planation was useful because it allowed them “to see all
the involved steps.” Participants provided this feedback for

indirect problems, mainly. The loop, in particular, was the
problem for which this feedback was more common. P6, for
example, said “the Explanation helped me in understanding
the loop because I could better see the evolution of the rules,”
while P10 pointed out that seeing the figures related to the
rules one at a time helped her in understanding the prob-
lem. In other 5 cases, the Step-by-Step Explanation helped
“participants to remember a rule they had defined before”
(“The Explanation helped me in understanding the problem
because it told me: hey, you have defined this rule before!”, P8).
This feedback takes even more importance if we think to
the real usage of an EUD platforms, where rules are defined
in different moments, even months later. In other 5 cases,
participants asserted that “the Explanation helped them by
visually highlighting the problem” (“The Explanation helped
me to understand the problem because it visually told me what
happened”, P6). In the remaining cases, participants provided
generic feedback about the usefulness of the Explanation,
i.e., “it helped me in understanding the problem” (3) and “it
confirmed my first idea” (2).

Key Takeaway: Highlighting the detected problem was
often not sufficient, while the step-by-step simulation of the
involved rules helped users understand problems.

Limitations
The main limitation of our study is that it was exploratory
in nature. In addition, this study targeted users without any
programming skills, only, and involved the creation of 12
trigger-action rules in a lab setting; a more ecologically-valid
study would be to deploy EUDebug in-the-wild where end
users could use it with their own rules. As such, our re-
sults raise the possibility of EUDebug’s debugging strategies
leading to a more predictable and correct usage of trigger-
action programming for the IoT. These findings could inform
follow-up comparative studies or future development.

6 CONCLUSION
We presented EUDebug, a system that enables users to de-
bug, at composition time, the trigger-action rules they create
for their IoT ecosystem. EUDebug highlights any possible
problems that the rules may generate and allows a step-by-
step simulation. It exploits a Semantic Colored Petri Net
formalism to model, check, and simulate trigger-action rules.
Results of an exploratory study with 15 participants suggest
that end users, with the help of EUDebug, can deal with
computer-related concepts such as loops, inconsistencies,
and redundancies. Moreover, they are able to understand
why their rules may generate a specific problem in most of
the cases. Results also highlight different perceptions among
the various highlighted problems, i.e., end users demonstrate
to be more tolerant with redundancies than with loops and
inconsistencies.

REFERENCES
[1] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. 2017. Visual Simple

Transformations: Empowering End-Users to Wire Internet of Things
Objects. ACM Transactions on Computer-Human Interaction 24, 2,
Article 10 (April 2017), 43 pages. https://doi.org/10.1145/3057857

[2] Carmelo Ardito, Paolo Buono, Giuseppe Desolda, and Maristella Mat-
era. 2018. From smart objects to smart experiences: An end-user
development approach. International Journal of Human-Computer
Studies 114 (2018), 51 – 68. https://doi.org/10.1016/j.ijhcs.2017.12.002
Advanced User Interfaces for Cultural Heritage.

[3] J. C. Augusto and M. J. Hornos. 2013. Software simulation and verifi-
cation to increase the reliability of Intelligent Environments. Ad-
vances in Engineering Software 58, Supplement C (2013), 18 – 34.
https://doi.org/10.1016/j.advengsoft.2012.12.004

[4] J. Bailey, G. Dong, and K. Ramamohanarao. 2004. On the decidability
of the termination problem of active database systems. Theoretical
Computer Science 311, 1 (2004), 389 – 437. https://doi.org/10.1016/j.
tcs.2003.09.003

[5] B. R. Barricelli and S. Valtolina. 2015. End-User Development: 5th In-
ternational Symposium, IS-EUD 2015, Madrid, Spain, May 26-29, 2015.
Proceedings. Springer International Publishing, Cham, Germany, Chap-
ter Designing for End-User Development in the Internet of Things,
9–24. https://doi.org/10.1007/978-3-319-18425-8_2

[6] Julia Brich, MarcelWalch, Michael Rietzler, MichaelWeber, and Florian
Schaub. 2017. Exploring End User Programming Needs in Home
Automation. ACM Transaction on Computer-Human Interaction 24, 2,
Article 11 (April 2017), 35 pages. https://doi.org/10.1145/3057858

[7] A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal,
Stefan Saroiu, and Colin Dixon. 2011. Home Automation in the Wild:
Challenges and Opportunities. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11). ACM, New York,
NY, USA, 2115–2124. https://doi.org/10.1145/1978942.1979249

[8] Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg Rothermel, Jay
Summet, and Chris Wallace. 2003. End-user Software Engineering
with Assertions in the Spreadsheet Paradigm. In Proceedings of the
25th International Conference on Software Engineering (ICSE ’03). IEEE
Computer Society, Washington, DC, USA, 93–103.

[9] R. J. Butler. 2000. Is this spreadsheet a tax evader? How HM Customs
and Excise test spreadsheet applications. In Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences. 6 pp. vol.1–.
https://doi.org/10.1109/HICSS.2000.926737

[10] Danilo Caivano, Daniela Fogli, Rosa Lanzilotti, Antonio Piccinno, and
Fabio Cassano. 2018. Supporting end users to control their smart
home: design implications from a literature review and an empirical
investigation. Journal of Systems and Software 144 (2018), 295–313.
https://doi.org/10.1016/j.jss.2018.06.035

[11] Julio Cano, Gwenaël Delaval, and Eric Rutten. 2014. Coordination of
ECA Rules by Verification and Control. In Coordination Models and
Languages, Eva Kühn and Rosario Pugliese (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 33–48.

[12] J. Cao, K. Rector, T. H. Park, S. D. Fleming, M. Burnett, and S. Wieden-
beck. 2010. A Debugging Perspective on End-User Mashup Program-
ming. In 2010 IEEE Symposium on Visual Languages and Human-Centric
Computing. 149–156. https://doi.org/10.1109/VLHCC.2010.29

[13] V. Cerf and M. Senges. 2016. Taking the Internet to the Next Physical
Level. IEEE Computer 49, 2 (Feb 2016), 80–86. https://doi.org/10.1109/
MC.2016.51

[14] F. Corno, L. De Russis, and A. Monge Roffarello. 2017. A Semantic
Web Approach to Simplifying Trigger-Action Programming in the

https://doi.org/10.1145/3057857
https://doi.org/10.1016/j.ijhcs.2017.12.002
https://doi.org/10.1016/j.advengsoft.2012.12.004
https://doi.org/10.1016/j.tcs.2003.09.003
https://doi.org/10.1016/j.tcs.2003.09.003
https://doi.org/10.1007/978-3-319-18425-8_2
https://doi.org/10.1145/3057858
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1109/HICSS.2000.926737
https://doi.org/10.1016/j.jss.2018.06.035
https://doi.org/10.1109/VLHCC.2010.29
https://doi.org/10.1109/MC.2016.51
https://doi.org/10.1109/MC.2016.51

IoT. Computer 50, 11 (2017), 18–24. https://doi.org/10.1109/MC.2017.
4041355

[15] Jose Danado and Fabio Paternò. 2014. Puzzle: A Mobile Application
Development Environment Using a Jigsaw Metaphor. Journal of Visual
Languages and Computing 25, 4 (Aug. 2014), 297–315. https://doi.org/
10.1016/j.jvlc.2014.03.005

[16] Florian Daniel and Maristella Matera. 2014. Mashups: Concepts, Models
and Architectures. Springer Publishing Company, Incorporated.

[17] G. Desolda, C. Ardito, and M. Matera. 2017. Empowering End Users to
Customize Their Smart Environments: Model, Composition Paradigms,
and Domain-Specific Tools. ACM Transactions on Computer-Human
Interaction 24, 2, Article 12 (2017), 52 pages. https://doi.org/10.1145/
3057859

[18] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006.
iCAP: Interactive Prototyping of Context-aware Applications. In Pro-
ceedings of the 4th International Conference on Pervasive Comput-
ing (PERVASIVE’06). Springer-Verlag, Berlin, Heidelberg, 254–271.
https://doi.org/10.1007/11748625_16

[19] D. Evans. 2011. The Internet of Things: How the Next Evolution of the
Internet Is Changing Everything. Technical Report. Cisco Internet
Business Solutions Group.

[20] S. Gatziu and K. R. Dittrich. 1994. Detecting composite events in active
database systems using Petri nets. In Proceedings of IEEE International
Workshop on Research Issues in Data Engineering: Active Databases
Systems. 2–9. https://doi.org/10.1109/RIDE.1994.282859

[21] G. Ghiani, M. Manca, F. Paternò, and C. Santoro. 2017. Personalization
of Context-Dependent Applications Through Trigger-Action Rules.
ACM Transactions on Computer-Human Interaction 24, 2, Article 14
(2017), 33 pages. https://doi.org/10.1145/3057861

[22] Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Jill Cao,
Kyle Rector, and Irwin Kwan. 2012. End-user Debugging Strategies:
A Sensemaking Perspective. ACM Transaction on Computer-Human
Interaction 19, 1, Article 5 (May 2012), 28 pages. https://doi.org/10.
1145/2147783.2147788

[23] J. Huang and M. Cakmak. 2015. Supporting Mental Model Accu-
racy in Trigger-action Programming. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Comput-
ing (UbiComp ’15). ACM, New York, NY, USA, 215–225. https:
//doi.org/10.1145/2750858.2805830

[24] Ting-Hao K. Huang, A. Azaria, and J. P. Bigham. 2016. Instructable-
Crowd: Creating IF-THEN Rules via Conversations with the Crowd. In
Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’16). ACM, New York, NY, USA,
1555–1562. https://doi.org/10.1145/2851581.2892502

[25] K. Jensen. 1995. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use, Vol. 2. Springer-Verlag, London, UK, UK.

[26] Xiaoqing Jin, Yousra Lembachar, and Gianfranco Ciardo. 2014. Sym-
bolic Termination and Confluence Checking for ECA Rules. Springer
Berlin Heidelberg, Berlin, Heidelberg, 99–123. https://doi.org/10.1007/
978-3-662-45730-6_6

[27] Cory Kissinger, Margaret Burnett, Simone Stumpf, Neeraja Subrah-
maniyan, Laura Beckwith, Sherry Yang, and Mary Beth Rosson. 2006.
Supporting End-user Debugging: What Do Users Want to Know?. In
Proceedings of the Working Conference on Advanced Visual Interfaces

(AVI ’06). ACM, New York, NY, USA, 135–142. https://doi.org/10.1145/
1133265.1133293

[28] A. J. Ko and B. A. Myers. 2004. Designing the Whyline: A Debugging
Interface for AskingQuestions About ProgramBehavior. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’04). ACM, New York, NY, USA, 151–158. https://doi.org/10.1145/
985692.985712

[29] Jisoo Lee, Luis Garduño, Erin Walker, and Winslow Burleson. 2013. A
Tangible Programming Tool for Creation of Context-aware Applica-
tions. In Proceedings of the 2013 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp ’13). ACM, New York,
NY, USA, 391–400. https://doi.org/10.1145/2493432.2493483

[30] X. Li, J. M. Medina, and S. V. Chapa. 2007. Applying Petri Nets in
Active Database Systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 37, 4 (July 2007), 482–
493. https://doi.org/10.1109/TSMCC.2007.897329

[31] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017.
An Empirical Characterization of IFTTT: Ecosystem, Usage, and Per-
formance. In Proceedings of the 2017 Internet Measurement Conference
(IMC ’17). ACM, New York, NY, USA, 398–404. https://doi.org/10.1145/
3131365.3131369

[32] Dejan Munjin. 2013. User Empowerment in the Internet of Things. Ph.D.
Dissertation. Université de Genève. http://archive-ouverte.unige.ch/
unige:28951

[33] A. Namoun, A. Daskalopoulou, N. Mehandjiev, and Z. Xun. 2016. Ex-
ploring Mobile End User Development: Existing Use and Design Fac-
tors. IEEE Transactions on Software Engineering 42, 10 (Oct 2016),
960–976. https://doi.org/10.1109/TSE.2016.2532873

[34] Raymond R. Panko. 1998. What We Know About Spreadsheet Errors. J.
End User Comput. 10, 2 (May 1998), 15–21. http://dl.acm.org/citation.
cfm?id=287893.287899

[35] K. T. Stolee and S. Elbaum. 2013. Identification, Impact, and Refactoring
of Smells in Pipe-Like Web Mashups. IEEE Transactions on Software
Engineering 39, 12 (Dec 2013), 1654–1679. https://doi.org/10.1109/TSE.
2013.42

[36] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L.
Littman. 2014. Practical Trigger-action Programming in the Smart
Home. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY, USA, 803–812.
https://doi.org/10.1145/2556288.2557420

[37] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard, D.
Schulze, and M. L. Littman. 2016. Trigger-Action Programming in the
Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings of the 34rd
Annual ACM Conference on Human Factors in Computing Systems (CHI
’16). ACM, New York, NY, USA, 3227–3231. https://doi.org/10.1145/
2858036.2858556

[38] C. Vannucchi, M. Diamanti, G. Mazzante, D. Cacciagrano, R. Culmone,
N. Gorogiannis, L. Mostarda, and F. Raimondi. 2017. Symbolic veri-
fication of event–condition–action rules in intelligent environments.
Journal of Reliable Intelligent Environments 3, 2 (01 Aug 2017), 117–130.
https://doi.org/10.1007/s40860-017-0036-z

[39] S. J. H. Yang, A. S. Lee, W. C. Chu, and Hongji Yang. 1998. Rule base ver-
ification using Petri nets. In Computer Software and Applications Con-
ference, 1998. COMPSAC ’98. Proceedings. The Twenty-Second Annual
International. 476–481. https://doi.org/10.1109/CMPSAC.1998.716699

https://doi.org/10.1109/MC.2017.4041355
https://doi.org/10.1109/MC.2017.4041355
https://doi.org/10.1016/j.jvlc.2014.03.005
https://doi.org/10.1016/j.jvlc.2014.03.005
https://doi.org/10.1145/3057859
https://doi.org/10.1145/3057859
https://doi.org/10.1007/11748625_16
https://doi.org/10.1109/RIDE.1994.282859
https://doi.org/10.1145/3057861
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.1145/2750858.2805830
https://doi.org/10.1145/2750858.2805830
https://doi.org/10.1145/2851581.2892502
https://doi.org/10.1007/978-3-662-45730-6_6
https://doi.org/10.1007/978-3-662-45730-6_6
https://doi.org/10.1145/1133265.1133293
https://doi.org/10.1145/1133265.1133293
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/2493432.2493483
https://doi.org/10.1109/TSMCC.2007.897329
https://doi.org/10.1145/3131365.3131369
https://doi.org/10.1145/3131365.3131369
http://archive-ouverte.unige.ch/unige:28951
http://archive-ouverte.unige.ch/unige:28951
https://doi.org/10.1109/TSE.2016.2532873
http://dl.acm.org/citation.cfm?id=287893.287899
http://dl.acm.org/citation.cfm?id=287893.287899
https://doi.org/10.1109/TSE.2013.42
https://doi.org/10.1109/TSE.2013.42
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1007/s40860-017-0036-z
https://doi.org/10.1109/CMPSAC.1998.716699

	Abstract
	1 Introduction
	2 Related Work
	Trigger-Action Programming in the IoT
	End-User Debugging
	Rule Modeling and Analysis

	3 Characterizing Problems in TA Rules
	4 The EUDebug System
	Semantic Colored Petri Net
	EUDebug User Interface
	Implementation

	5 Exploratory User Study
	Study Procedure
	EUDebug as a Helper for Understanding Problems
	Highlighting Problems or Explaining Them?
	Limitations

	6 Conclusion
	References

